Learning tensor networks with parameter dependence for Fourier-based option pricing

Rihito Sakurai, Haruto Takahashi, Koichi Miyamoto
{"title":"Learning tensor networks with parameter dependence for Fourier-based option pricing","authors":"Rihito Sakurai, Haruto Takahashi, Koichi Miyamoto","doi":"arxiv-2405.00701","DOIUrl":null,"url":null,"abstract":"A long-standing issue in mathematical finance is the speed-up of pricing\noptions, especially multi-asset options. A recent study has proposed to use\ntensor train learning algorithms to speed up Fourier transform (FT)-based\noption pricing, utilizing the ability of tensor networks to compress\nhigh-dimensional tensors. Another usage of the tensor network is to compress\nfunctions, including their parameter dependence. In this study, we propose a\npricing method, where, by a tensor learning algorithm, we build tensor trains\nthat approximate functions appearing in FT-based option pricing with their\nparameter dependence and efficiently calculate the option price for the varying\ninput parameters. As a benchmark test, we run the proposed method to price a\nmulti-asset option for the various values of volatilities and present asset\nprices. We show that, in the tested cases involving up to about 10 assets, the\nproposed method is comparable to or outperforms Monte Carlo simulation with\n$10^5$ paths in terms of computational complexity, keeping the comparable\naccuracy.","PeriodicalId":501294,"journal":{"name":"arXiv - QuantFin - Computational Finance","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Computational Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.00701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A long-standing issue in mathematical finance is the speed-up of pricing options, especially multi-asset options. A recent study has proposed to use tensor train learning algorithms to speed up Fourier transform (FT)-based option pricing, utilizing the ability of tensor networks to compress high-dimensional tensors. Another usage of the tensor network is to compress functions, including their parameter dependence. In this study, we propose a pricing method, where, by a tensor learning algorithm, we build tensor trains that approximate functions appearing in FT-based option pricing with their parameter dependence and efficiently calculate the option price for the varying input parameters. As a benchmark test, we run the proposed method to price a multi-asset option for the various values of volatilities and present asset prices. We show that, in the tested cases involving up to about 10 assets, the proposed method is comparable to or outperforms Monte Carlo simulation with $10^5$ paths in terms of computational complexity, keeping the comparable accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为基于傅立叶的期权定价学习具有参数依赖性的张量网络
数学金融学中一个长期存在的问题是加快期权定价,尤其是多资产期权的定价。最近的一项研究提出,利用张量网络压缩高维张量的能力,使用张量训练学习算法来加速基于傅立叶变换(FT)的期权定价。张量网络的另一个用途是压缩函数,包括其参数依赖性。在本研究中,我们提出了一种定价方法,即通过张量学习算法,建立张量训练,以近似基于 FT 的期权定价中出现的函数及其参数依赖性,并有效计算不同输入参数下的期权价格。作为基准测试,我们使用所提出的方法对不同波动率值和资产现价的多资产期权进行了定价。结果表明,在涉及多达 10 种资产的测试案例中,所提出的方法在计算复杂度方面与采用 10^5$ 路径的蒙特卡罗模拟方法相当,甚至优于后者,同时保持了相当的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A deep primal-dual BSDE method for optimal stopping problems Robust financial calibration: a Bayesian approach for neural SDEs MANA-Net: Mitigating Aggregated Sentiment Homogenization with News Weighting for Enhanced Market Prediction QuantFactor REINFORCE: Mining Steady Formulaic Alpha Factors with Variance-bounded REINFORCE Signature of maturity in cryptocurrency volatility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1