Online Energy-Aware Scheduling for Deadline-Constrained Applications in Distributed Heterogeneous Systems

IF 1.1 4区 工程技术 Q3 ENGINEERING, AEROSPACE International Journal of Aerospace Engineering Pub Date : 2024-05-02 DOI:10.1155/2024/2122895
Yifan Liu, Chengelie Du, Jinchao Chen, Xiaoyan Du
{"title":"Online Energy-Aware Scheduling for Deadline-Constrained Applications in Distributed Heterogeneous Systems","authors":"Yifan Liu, Chengelie Du, Jinchao Chen, Xiaoyan Du","doi":"10.1155/2024/2122895","DOIUrl":null,"url":null,"abstract":"In the current computing environment, the significance of distributed heterogeneous systems has gained prominence. The research on scheduling problems in distributed systems that consider energy consumption has garnered substantial attention due to its potential to enhance system stability, achieve energy savings, and contribute to environmental preservation. However, efficient scheduling in such systems necessitates not only the consideration of energy consumption but also the ability to adapt to the dynamic nature of the system. To tackle these challenges, we propose an online energy-aware scheduling algorithm for deadline-constrained applications in distributed heterogeneous systems, leveraging dynamic voltage and frequency scaling (DVFS) techniques. First, the algorithm models the continuously arriving applications and heterogeneous processors and proposes a novel task-sorting method to prioritize tasks, ensuring that more applications are completed within their respective deadlines. Second, the algorithm controls the selection range of processors based on the task’s subdeadline and assigns the task to the processor with the minimum energy consumption. Through experiments conducted with randomly generated applications, our approach consistently exhibits superior performance when compared to similar scheduling algorithms.","PeriodicalId":13748,"journal":{"name":"International Journal of Aerospace Engineering","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Aerospace Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/2122895","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

In the current computing environment, the significance of distributed heterogeneous systems has gained prominence. The research on scheduling problems in distributed systems that consider energy consumption has garnered substantial attention due to its potential to enhance system stability, achieve energy savings, and contribute to environmental preservation. However, efficient scheduling in such systems necessitates not only the consideration of energy consumption but also the ability to adapt to the dynamic nature of the system. To tackle these challenges, we propose an online energy-aware scheduling algorithm for deadline-constrained applications in distributed heterogeneous systems, leveraging dynamic voltage and frequency scaling (DVFS) techniques. First, the algorithm models the continuously arriving applications and heterogeneous processors and proposes a novel task-sorting method to prioritize tasks, ensuring that more applications are completed within their respective deadlines. Second, the algorithm controls the selection range of processors based on the task’s subdeadline and assigns the task to the processor with the minimum energy consumption. Through experiments conducted with randomly generated applications, our approach consistently exhibits superior performance when compared to similar scheduling algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分布式异构系统中截止时间受限应用的在线能量感知调度
在当前的计算环境中,分布式异构系统的重要性日益凸显。考虑能耗的分布式系统调度问题的研究,因其在增强系统稳定性、实现节能和环境保护方面的潜力而备受关注。然而,在此类系统中进行高效调度不仅需要考虑能耗,还需要具备适应系统动态特性的能力。为了应对这些挑战,我们利用动态电压和频率缩放(DVFS)技术,为分布式异构系统中受截止日期限制的应用提出了一种在线能量感知调度算法。首先,该算法对连续到达的应用和异构处理器进行建模,并提出一种新颖的任务排序方法来确定任务的优先级,确保更多应用在各自的截止日期内完成。其次,该算法根据任务的子截止日期控制处理器的选择范围,并将任务分配给能耗最小的处理器。通过对随机生成的应用程序进行实验,与类似的调度算法相比,我们的方法始终表现出卓越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.70
自引率
7.10%
发文量
195
审稿时长
22 weeks
期刊介绍: International Journal of Aerospace Engineering aims to serve the international aerospace engineering community through dissemination of scientific knowledge on practical engineering and design methodologies pertaining to aircraft and space vehicles. Original unpublished manuscripts are solicited on all areas of aerospace engineering including but not limited to: -Mechanics of materials and structures- Aerodynamics and fluid mechanics- Dynamics and control- Aeroacoustics- Aeroelasticity- Propulsion and combustion- Avionics and systems- Flight simulation and mechanics- Unmanned air vehicles (UAVs). Review articles on any of the above topics are also welcome.
期刊最新文献
Comparative Study and Airspeed Sensitivity Analysis of Full-Wing Solar-Powered UAVs Using Rigid-Body, Multibody, and Rigid-Flexible Combo Models Enhanced Multi-UAV Path Planning in Complex Environments With Voronoi-Based Obstacle Modelling and Q-Learning Multi-UAV Cooperative Air Combat Target Assignment Method Based on VNS-IBPSO in Complex Dynamic Environment A Novel Strategy for Hypersonic Vehicle With Complex Distributed No-Fly Zone Constraints Development of Anisogrid Lattice Composite Structures for Fighter Wing Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1