Paul K H Yeung, Shiu-Hang Lee, Tsunefumi Mizuno, Aya Bamba
{"title":"Examining a hadronic γ-ray scenario for the radiative shell and molecular clouds of the old GeV supernova remnant G298.6−0.0","authors":"Paul K H Yeung, Shiu-Hang Lee, Tsunefumi Mizuno, Aya Bamba","doi":"10.1093/pasj/psae025","DOIUrl":null,"url":null,"abstract":"Based on the 13.7 yr Fermi-LAT data, Yeung, Bamba, and Sano (2023, PASJ, 75, 384) claimed detection of two γ-ray sources (namely Src-NE and Src-NW) associated with the supernova remnant (SNR) G298.6−0.0, and interpreted it as an old GeV SNR interacting with molecular clouds (MCs). In this follow-up study, we refine the flux measurements below 2 GeV with Fermi-LAT event types of better angular reconstruction. Then, we report our γ-ray spectral fittings and cosmic-ray phenomenology in a hadronic scenario, considering both the shell and MC regions of SNR G298.6−0.0. We confirm that the γ-ray spectra of both Src-NE and Src-NW exhibit spectral breaks, at $1.50_{-0.50}^{+0.60}$ and $0.68_{-0.11}^{+0.32}\\:$GeV, respectively. Src-NW has a harder broad-band photon index than Src-NE, suggesting an appreciable difference between the physical separations of their respective emission sites from SNR G298.6−0.0. The cosmic-ray spectrum responsible for Src-NE starts with a minimum energy $E_\\mathrm{CR,min}=1.38_{-0.16}^{+0.47}\\:$GeV, and has a proton index $\\Gamma _\\mathrm{CR}=2.57_{-0.21}^{+0.18}$ below the exponential cutoff energy $E_\\mathrm{CR,max}=240_{-150}^{+240}\\:$GeV. Accordingly, we argue that Src-NE is dominated by the SNR shell, while only a minor portion of lower-energy emission is contributed by the MCs interacting with the SNR. The cosmic-ray population for Src-NW starts at a higher energy such that the ECR, min ratio of Src-NW to Src-NE is ≳2. The high ECR, min, as well as the high cosmic-ray energy density required (∼26 eV cm−3), supports the interpretation that Src-NW is predominantly the γ-ray emission from the farther MCs being bombarded by protons that had earlier escaped from SNR G298.6−0.0. By comparing the high-energy features of G298.6−0.0 with those of analogical SNRs, especially SNR W 28 and SNR W 44, we further constrain the age of SNR G298.6−0.0 to be 10–30 kyr, under the assumption of a purely hadronic scenario.","PeriodicalId":20733,"journal":{"name":"Publications of the Astronomical Society of Japan","volume":"11 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications of the Astronomical Society of Japan","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1093/pasj/psae025","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Based on the 13.7 yr Fermi-LAT data, Yeung, Bamba, and Sano (2023, PASJ, 75, 384) claimed detection of two γ-ray sources (namely Src-NE and Src-NW) associated with the supernova remnant (SNR) G298.6−0.0, and interpreted it as an old GeV SNR interacting with molecular clouds (MCs). In this follow-up study, we refine the flux measurements below 2 GeV with Fermi-LAT event types of better angular reconstruction. Then, we report our γ-ray spectral fittings and cosmic-ray phenomenology in a hadronic scenario, considering both the shell and MC regions of SNR G298.6−0.0. We confirm that the γ-ray spectra of both Src-NE and Src-NW exhibit spectral breaks, at $1.50_{-0.50}^{+0.60}$ and $0.68_{-0.11}^{+0.32}\:$GeV, respectively. Src-NW has a harder broad-band photon index than Src-NE, suggesting an appreciable difference between the physical separations of their respective emission sites from SNR G298.6−0.0. The cosmic-ray spectrum responsible for Src-NE starts with a minimum energy $E_\mathrm{CR,min}=1.38_{-0.16}^{+0.47}\:$GeV, and has a proton index $\Gamma _\mathrm{CR}=2.57_{-0.21}^{+0.18}$ below the exponential cutoff energy $E_\mathrm{CR,max}=240_{-150}^{+240}\:$GeV. Accordingly, we argue that Src-NE is dominated by the SNR shell, while only a minor portion of lower-energy emission is contributed by the MCs interacting with the SNR. The cosmic-ray population for Src-NW starts at a higher energy such that the ECR, min ratio of Src-NW to Src-NE is ≳2. The high ECR, min, as well as the high cosmic-ray energy density required (∼26 eV cm−3), supports the interpretation that Src-NW is predominantly the γ-ray emission from the farther MCs being bombarded by protons that had earlier escaped from SNR G298.6−0.0. By comparing the high-energy features of G298.6−0.0 with those of analogical SNRs, especially SNR W 28 and SNR W 44, we further constrain the age of SNR G298.6−0.0 to be 10–30 kyr, under the assumption of a purely hadronic scenario.
期刊介绍:
Publications of the Astronomical Society of Japan (PASJ) publishes the results of original research in all aspects of astronomy, astrophysics, and fields closely related to them.