{"title":"Porous gold-layered cubic and octahedral Cu-oxide nanocrystals: Dopamine sensing","authors":"Carla Jacobs, Elizabeth Erasmus","doi":"10.1177/17475198241247964","DOIUrl":null,"url":null,"abstract":"Two morphologically different porous gold layered on Cu-oxide-based electrochemical sensors were developed for the selective detection of dopamine in the presence of uric acid, ascorbic acid or dextrose. The nanoparticles were prepared by layering Au onto either a cubic or octahedron-shaped Cu-oxide crystal via a galvanic reaction. These were characterized with scanning electron microscopy, energy dispersive X-ray and X-ray photoelectron spectroscopy. The porous structure of the gold over layer was clearly visible on the scanning electron microscopy image while the macro morphology was maintained. X-ray photoelectron spectroscopy confirmed the presence of metallic gold while both Cu<jats:sup>I</jats:sup> (CuO) and Cu<jats:sup>II</jats:sup> (Cu<jats:sub>2</jats:sub>O) were present in the samples. These two Au/Cu-oxide nanocomposites were used to modify glassy carbon electrodes and were tested for their dopamine sensing ability. Differential pulse voltammetry was used to investigate the selectivity towards dopamine in the presence of different interfering molecules uric acid, ascorbic acid and dextrose). From the differential pulse voltammetry, the lowest limit of detection was found to be 1.1 μM, with a sensitivity of 3.4 μA mM<jats:sup>−1</jats:sup> mm<jats:sup>−2</jats:sup> in the linear range of 10–250 μM for the porous gold layered covering the octahedron Cu-oxide-modified glassy carbon electrode.","PeriodicalId":15323,"journal":{"name":"Journal of Chemical Research","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/17475198241247964","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Two morphologically different porous gold layered on Cu-oxide-based electrochemical sensors were developed for the selective detection of dopamine in the presence of uric acid, ascorbic acid or dextrose. The nanoparticles were prepared by layering Au onto either a cubic or octahedron-shaped Cu-oxide crystal via a galvanic reaction. These were characterized with scanning electron microscopy, energy dispersive X-ray and X-ray photoelectron spectroscopy. The porous structure of the gold over layer was clearly visible on the scanning electron microscopy image while the macro morphology was maintained. X-ray photoelectron spectroscopy confirmed the presence of metallic gold while both CuI (CuO) and CuII (Cu2O) were present in the samples. These two Au/Cu-oxide nanocomposites were used to modify glassy carbon electrodes and were tested for their dopamine sensing ability. Differential pulse voltammetry was used to investigate the selectivity towards dopamine in the presence of different interfering molecules uric acid, ascorbic acid and dextrose). From the differential pulse voltammetry, the lowest limit of detection was found to be 1.1 μM, with a sensitivity of 3.4 μA mM−1 mm−2 in the linear range of 10–250 μM for the porous gold layered covering the octahedron Cu-oxide-modified glassy carbon electrode.
期刊介绍:
The Journal of Chemical Research is a monthly journal which has a broad international authorship and publishes research papers and reviews in all branches of experimental chemistry. Established in 1977 as a joint venture by the British, French and German chemical societies it maintains the high standards set by the founding societies. Each paper is independently peer reviewed and only carefully evaluated contributions are accepted. Recent papers have described new synthetic methods, new heterocyclic compounds, new natural products, and the inorganic chemistry of metal complexes.