Callico: a Versatile Open-Source Document Image Annotation Platform

Christopher Kermorvant, Eva Bardou, Manon Blanco, Bastien Abadie
{"title":"Callico: a Versatile Open-Source Document Image Annotation Platform","authors":"Christopher Kermorvant, Eva Bardou, Manon Blanco, Bastien Abadie","doi":"arxiv-2405.01071","DOIUrl":null,"url":null,"abstract":"This paper presents Callico, a web-based open source platform designed to\nsimplify the annotation process in document recognition projects. The move\ntowards data-centric AI in machine learning and deep learning underscores the\nimportance of high-quality data, and the need for specialised tools that\nincrease the efficiency and effectiveness of generating such data. For document\nimage annotation, Callico offers dual-display annotation for digitised\ndocuments, enabling simultaneous visualisation and annotation of scanned images\nand text. This capability is critical for OCR and HTR model training, document\nlayout analysis, named entity recognition, form-based key value annotation or\nhierarchical structure annotation with element grouping. The platform supports\ncollaborative annotation with versatile features backed by a commitment to open\nsource development, high-quality code standards and easy deployment via Docker.\nIllustrative use cases - including the transcription of the Belfort municipal\nregisters, the indexing of French World War II prisoners for the ICRC, and the\nextraction of personal information from the Socface project's census lists -\ndemonstrate Callico's applicability and utility.","PeriodicalId":501285,"journal":{"name":"arXiv - CS - Digital Libraries","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Digital Libraries","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.01071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents Callico, a web-based open source platform designed to simplify the annotation process in document recognition projects. The move towards data-centric AI in machine learning and deep learning underscores the importance of high-quality data, and the need for specialised tools that increase the efficiency and effectiveness of generating such data. For document image annotation, Callico offers dual-display annotation for digitised documents, enabling simultaneous visualisation and annotation of scanned images and text. This capability is critical for OCR and HTR model training, document layout analysis, named entity recognition, form-based key value annotation or hierarchical structure annotation with element grouping. The platform supports collaborative annotation with versatile features backed by a commitment to open source development, high-quality code standards and easy deployment via Docker. Illustrative use cases - including the transcription of the Belfort municipal registers, the indexing of French World War II prisoners for the ICRC, and the extraction of personal information from the Socface project's census lists - demonstrate Callico's applicability and utility.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Callico:多功能开源文档图像注释平台
本文介绍的 Callico 是一个基于网络的开源平台,旨在简化文档识别项目中的注释过程。在机器学习和深度学习领域,人工智能正朝着以数据为中心的方向发展,这凸显了高质量数据的重要性,同时也说明需要专门的工具来提高生成此类数据的效率和有效性。在文档图像注释方面,Callico 为数字化文档提供了双显示注释功能,可同时对扫描图像和文本进行可视化和注释。这一功能对于OCR和HTR模型训练、文档布局分析、命名实体识别、基于表单的关键值注释或带有元素分组的层次结构注释至关重要。该平台支持协作注释,具有多功能,并致力于开源开发、高质量代码标准和通过 Docker 轻松部署。示例用例包括贝尔福市政登记簿的转录、为红十字国际委员会编制法国二战战俘索引,以及从 Socface 项目的人口普查名单中提取个人信息,这些都证明了 Callico 的适用性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Publishing Instincts: An Exploration-Exploitation Framework for Studying Academic Publishing Behavior and "Home Venues" Research Citations Building Trust in Wikipedia Evaluating the Linguistic Coverage of OpenAlex: An Assessment of Metadata Accuracy and Completeness Towards understanding evolution of science through language model series Ensuring Adherence to Standards in Experiment-Related Metadata Entered Via Spreadsheets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1