{"title":"Subspace Newton method for sparse group $$\\ell _0$$ optimization problem","authors":"Shichen Liao, Congying Han, Tiande Guo, Bonan Li","doi":"10.1007/s10898-024-01396-y","DOIUrl":null,"url":null,"abstract":"<p>This paper investigates sparse optimization problems characterized by a sparse group structure, where element- and group-level sparsity are jointly taken into account. This particular optimization model has exhibited notable efficacy in tasks such as feature selection, parameter estimation, and the advancement of model interpretability. Central to our study is the scrutiny of the <span>\\(\\ell _0\\)</span> and <span>\\(\\ell _{2,0}\\)</span> norm regularization model, which, in comparison to alternative surrogate formulations, presents formidable computational challenges. We embark on our study by conducting the analysis of the optimality conditions of the sparse group optimization problem, leveraging the notion of a <span>\\(\\gamma \\)</span>-stationary point, whose linkage to local and global minimizer is established. In a subsequent facet of our study, we develop a novel subspace Newton algorithm for sparse group <span>\\(\\ell _0\\)</span> optimization problem and prove its global convergence property as well as local second-order convergence rate. Experimental results reveal the superlative performance of our algorithm in terms of both precision and computational expediency, thereby outperforming several state-of-the-art solvers.</p>","PeriodicalId":15961,"journal":{"name":"Journal of Global Optimization","volume":"31 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Global Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10898-024-01396-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates sparse optimization problems characterized by a sparse group structure, where element- and group-level sparsity are jointly taken into account. This particular optimization model has exhibited notable efficacy in tasks such as feature selection, parameter estimation, and the advancement of model interpretability. Central to our study is the scrutiny of the \(\ell _0\) and \(\ell _{2,0}\) norm regularization model, which, in comparison to alternative surrogate formulations, presents formidable computational challenges. We embark on our study by conducting the analysis of the optimality conditions of the sparse group optimization problem, leveraging the notion of a \(\gamma \)-stationary point, whose linkage to local and global minimizer is established. In a subsequent facet of our study, we develop a novel subspace Newton algorithm for sparse group \(\ell _0\) optimization problem and prove its global convergence property as well as local second-order convergence rate. Experimental results reveal the superlative performance of our algorithm in terms of both precision and computational expediency, thereby outperforming several state-of-the-art solvers.
期刊介绍:
The Journal of Global Optimization publishes carefully refereed papers that encompass theoretical, computational, and applied aspects of global optimization. While the focus is on original research contributions dealing with the search for global optima of non-convex, multi-extremal problems, the journal’s scope covers optimization in the widest sense, including nonlinear, mixed integer, combinatorial, stochastic, robust, multi-objective optimization, computational geometry, and equilibrium problems. Relevant works on data-driven methods and optimization-based data mining are of special interest.
In addition to papers covering theory and algorithms of global optimization, the journal publishes significant papers on numerical experiments, new testbeds, and applications in engineering, management, and the sciences. Applications of particular interest include healthcare, computational biochemistry, energy systems, telecommunications, and finance. Apart from full-length articles, the journal features short communications on both open and solved global optimization problems. It also offers reviews of relevant books and publishes special issues.