Clustering functional data via variational inference

IF 1.4 4区 计算机科学 Q2 STATISTICS & PROBABILITY Advances in Data Analysis and Classification Pub Date : 2024-04-30 DOI:10.1007/s11634-024-00590-w
Chengqian Xian, Camila P. E. de Souza, John Jewell, Ronaldo Dias
{"title":"Clustering functional data via variational inference","authors":"Chengqian Xian, Camila P. E. de Souza, John Jewell, Ronaldo Dias","doi":"10.1007/s11634-024-00590-w","DOIUrl":null,"url":null,"abstract":"<p>Among different functional data analyses, clustering analysis aims to determine underlying groups of curves in the dataset when there is no information on the group membership of each curve. In this work, we develop a novel variational Bayes (VB) algorithm for clustering and smoothing functional data simultaneously via a B-spline regression mixture model with random intercepts. We employ the deviance information criterion to select the best number of clusters. The proposed VB algorithm is evaluated and compared with other methods (<i>k</i>-means, functional <i>k</i>-means and two other model-based methods) via a simulation study under various scenarios. We apply our proposed methodology to two publicly available datasets. We demonstrate that the proposed VB algorithm achieves satisfactory clustering performance in both simulation and real data analyses.\n</p>","PeriodicalId":49270,"journal":{"name":"Advances in Data Analysis and Classification","volume":"50 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Data Analysis and Classification","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11634-024-00590-w","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Among different functional data analyses, clustering analysis aims to determine underlying groups of curves in the dataset when there is no information on the group membership of each curve. In this work, we develop a novel variational Bayes (VB) algorithm for clustering and smoothing functional data simultaneously via a B-spline regression mixture model with random intercepts. We employ the deviance information criterion to select the best number of clusters. The proposed VB algorithm is evaluated and compared with other methods (k-means, functional k-means and two other model-based methods) via a simulation study under various scenarios. We apply our proposed methodology to two publicly available datasets. We demonstrate that the proposed VB algorithm achieves satisfactory clustering performance in both simulation and real data analyses.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过变异推理对功能数据进行聚类
在不同的功能数据分析中,聚类分析的目的是在没有每条曲线所属组别的信息时,确定数据集中曲线的潜在组别。在这项工作中,我们开发了一种新型变异贝叶斯(VB)算法,通过带有随机截距的 B 样条回归混合模型,同时对功能数据进行聚类和平滑。我们采用偏差信息准则来选择最佳聚类数目。通过在各种情况下进行模拟研究,对所提出的 VB 算法进行了评估,并与其他方法(k-means、函数式 k-means 和其他两种基于模型的方法)进行了比较。我们将提出的方法应用于两个公开的数据集。我们证明,在模拟和真实数据分析中,建议的 VB 算法都取得了令人满意的聚类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.40
自引率
6.20%
发文量
45
审稿时长
>12 weeks
期刊介绍: The international journal Advances in Data Analysis and Classification (ADAC) is designed as a forum for high standard publications on research and applications concerning the extraction of knowable aspects from many types of data. It publishes articles on such topics as structural, quantitative, or statistical approaches for the analysis of data; advances in classification, clustering, and pattern recognition methods; strategies for modeling complex data and mining large data sets; methods for the extraction of knowledge from data, and applications of advanced methods in specific domains of practice. Articles illustrate how new domain-specific knowledge can be made available from data by skillful use of data analysis methods. The journal also publishes survey papers that outline, and illuminate the basic ideas and techniques of special approaches.
期刊最新文献
Editorial for ADAC issue 4 of volume 18 (2024) Special issue on “New methodologies in clustering and classification for complex and/or big data” Marginal models with individual-specific effects for the analysis of longitudinal bipartite networks Using Bagging to improve clustering methods in the context of three-dimensional shapes The chiPower transformation: a valid alternative to logratio transformations in compositional data analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1