Domain-Oriented Knowledge Transfer for Cross-Domain Recommendation

IF 8.4 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Multimedia Pub Date : 2024-04-29 DOI:10.1109/TMM.2024.3394686
Guoshuai Zhao;Xiaolong Zhang;Hao Tang;Jialie Shen;Xueming Qian
{"title":"Domain-Oriented Knowledge Transfer for Cross-Domain Recommendation","authors":"Guoshuai Zhao;Xiaolong Zhang;Hao Tang;Jialie Shen;Xueming Qian","doi":"10.1109/TMM.2024.3394686","DOIUrl":null,"url":null,"abstract":"Cross-Domain Recommendation (CDR) aims to alleviate the cold-start problem by transferring knowledge from a data-rich domain (source domain) to a data-sparse domain (target domain), where knowledge needs to be transferred through a bridge connecting the two domains. Therefore, constructing a bridge connecting the two domains is fundamental for enabling cross-domain recommendation. However, existing CDR methods often overlook the valuable of natural relationships between items in connecting the two domains. To address this issue, we propose DKTCDR: a Domain-oriented Knowledge Transfer method for Cross-Domain Recommendation. In DKTCDR, We leverages the rich relationships between items in a cross-domain knowledge graph as bridges to facilitate both intra- and inter-domain knowledge transfer. Additionally, we design a cross-domain knowledge transfer strategy to enhance inter-domain knowledge transfer. Furthermore, we integrate the semantic modality information of items with the knowledge graph modality information to enhance item modeling. To support our investigation, we construct two high-quality cross-domain recommendation datasets, each containing a cross-domain knowledge graph. Our experimental results on these datasets validate the effectiveness of our proposed method. Source code is available at \n<uri>https://github.com/zxxxl123/DKTCDR</uri>\n.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"26 ","pages":"9539-9550"},"PeriodicalIF":8.4000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10509785/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Cross-Domain Recommendation (CDR) aims to alleviate the cold-start problem by transferring knowledge from a data-rich domain (source domain) to a data-sparse domain (target domain), where knowledge needs to be transferred through a bridge connecting the two domains. Therefore, constructing a bridge connecting the two domains is fundamental for enabling cross-domain recommendation. However, existing CDR methods often overlook the valuable of natural relationships between items in connecting the two domains. To address this issue, we propose DKTCDR: a Domain-oriented Knowledge Transfer method for Cross-Domain Recommendation. In DKTCDR, We leverages the rich relationships between items in a cross-domain knowledge graph as bridges to facilitate both intra- and inter-domain knowledge transfer. Additionally, we design a cross-domain knowledge transfer strategy to enhance inter-domain knowledge transfer. Furthermore, we integrate the semantic modality information of items with the knowledge graph modality information to enhance item modeling. To support our investigation, we construct two high-quality cross-domain recommendation datasets, each containing a cross-domain knowledge graph. Our experimental results on these datasets validate the effectiveness of our proposed method. Source code is available at https://github.com/zxxxl123/DKTCDR .
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
跨领域推荐的领域导向知识转移
跨域推荐(CDR)旨在通过将知识从数据丰富的域(源域)转移到数据稀少的域(目标域)来缓解冷启动问题。因此,构建连接两个域的桥梁是实现跨域推荐的基础。然而,现有的 CDR 方法往往忽视了项目之间的自然关系在连接两个域方面的价值。为了解决这个问题,我们提出了 DKTCDR:一种面向领域的跨领域推荐知识转移方法。在 DKTCDR 中,我们利用跨领域知识图谱中项目之间的丰富关系作为桥梁,促进领域内和领域间的知识转移。此外,我们还设计了一种跨域知识转移策略,以加强域间知识转移。此外,我们还将项目的语义模态信息与知识图谱模态信息相结合,以加强项目建模。为了支持我们的研究,我们构建了两个高质量的跨领域推荐数据集,每个数据集都包含一个跨领域知识图谱。我们在这些数据集上的实验结果验证了我们提出的方法的有效性。源代码见 https://github.com/zxxxl123/DKTCDR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Multimedia
IEEE Transactions on Multimedia 工程技术-电信学
CiteScore
11.70
自引率
11.00%
发文量
576
审稿时长
5.5 months
期刊介绍: The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.
期刊最新文献
Deep Mutual Distillation for Unsupervised Domain Adaptation Person Re-identification Collaborative License Plate Recognition via Association Enhancement Network With Auxiliary Learning and a Unified Benchmark VLDadaptor: Domain Adaptive Object Detection with Vision-Language Model Distillation Camera-Incremental Object Re-Identification With Identity Knowledge Evolution Dual-View Data Hallucination With Semantic Relation Guidance for Few-Shot Image Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1