Learning and Balancing Unknown Loads in Large-Scale Systems

IF 1.4 3区 数学 Q2 MATHEMATICS, APPLIED Mathematics of Operations Research Pub Date : 2024-05-03 DOI:10.1287/moor.2021.0212
Diego Goldsztajn, Sem C. Borst, Johan S. H. van Leeuwaarden
{"title":"Learning and Balancing Unknown Loads in Large-Scale Systems","authors":"Diego Goldsztajn, Sem C. Borst, Johan S. H. van Leeuwaarden","doi":"10.1287/moor.2021.0212","DOIUrl":null,"url":null,"abstract":"Consider a system of identical server pools where tasks with exponentially distributed service times arrive as a time-inhomogeneous Poisson process. An admission threshold is used in an inner control loop to assign incoming tasks to server pools, while in an outer control loop, a learning scheme adjusts this threshold over time to keep it aligned with the unknown offered load of the system. In a many-server regime, we prove that the learning scheme reaches an equilibrium along intervals of time when the normalized offered load per server pool is suitably bounded and that this results in a balanced distribution of the load. Furthermore, we establish a similar result when tasks with Coxian distributed service times arrive at a constant rate and the threshold is adjusted using only the total number of tasks in the system. The novel proof technique developed in this paper, which differs from a traditional fluid limit analysis, allows us to handle rapid variations of the first learning scheme, triggered by excursions of the occupancy process that have vanishing size. Moreover, our approach allows us to characterize the asymptotic behavior of the system with Coxian distributed service times without relying on a fluid limit of a detailed state descriptor.Funding: The work in this paper was supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek [Gravitation Grant NETWORKS-024.002.003 and Vici Grant 202.068].","PeriodicalId":49852,"journal":{"name":"Mathematics of Operations Research","volume":"18 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Operations Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1287/moor.2021.0212","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Consider a system of identical server pools where tasks with exponentially distributed service times arrive as a time-inhomogeneous Poisson process. An admission threshold is used in an inner control loop to assign incoming tasks to server pools, while in an outer control loop, a learning scheme adjusts this threshold over time to keep it aligned with the unknown offered load of the system. In a many-server regime, we prove that the learning scheme reaches an equilibrium along intervals of time when the normalized offered load per server pool is suitably bounded and that this results in a balanced distribution of the load. Furthermore, we establish a similar result when tasks with Coxian distributed service times arrive at a constant rate and the threshold is adjusted using only the total number of tasks in the system. The novel proof technique developed in this paper, which differs from a traditional fluid limit analysis, allows us to handle rapid variations of the first learning scheme, triggered by excursions of the occupancy process that have vanishing size. Moreover, our approach allows us to characterize the asymptotic behavior of the system with Coxian distributed service times without relying on a fluid limit of a detailed state descriptor.Funding: The work in this paper was supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek [Gravitation Grant NETWORKS-024.002.003 and Vici Grant 202.068].
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
学习和平衡大规模系统中的未知负载
考虑一个由相同服务器池组成的系统,在这个系统中,服务时间呈指数分布的任务以时间同构泊松过程的形式到达。在一个内部控制环中,使用一个准入阈值将接收到的任务分配给服务器池,而在一个外部控制环中,一个学习方案会随着时间的推移调整该阈值,使其与系统的未知提供负载保持一致。在多服务器系统中,我们证明了当每个服务器池的归一化提供负载有适当界限时,学习方案会在一定时间间隔内达到平衡,从而实现负载的均衡分配。此外,当具有考克斯分布式服务时间的任务以恒定的速度到达,并且只使用系统中的任务总数来调整阈值时,我们也得出了类似的结果。本文开发的新颖证明技术不同于传统的流体极限分析,它允许我们处理第一学习方案的快速变化,这种快速变化是由占用过程中大小消失的偏移引发的。此外,我们的方法允许我们描述具有考克斯分布式服务时间的系统的渐近行为,而无需依赖详细状态描述符的流体极限:本文的研究工作得到了荷兰科学研究组织(Nederlandse Organisatie voor Wetenschappelijk Onderzoek)[引力资助 NETWORKS-024.002.003 和 Vici 资助 202.068]的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mathematics of Operations Research
Mathematics of Operations Research 管理科学-应用数学
CiteScore
3.40
自引率
5.90%
发文量
178
审稿时长
15.0 months
期刊介绍: Mathematics of Operations Research is an international journal of the Institute for Operations Research and the Management Sciences (INFORMS). The journal invites articles concerned with the mathematical and computational foundations in the areas of continuous, discrete, and stochastic optimization; mathematical programming; dynamic programming; stochastic processes; stochastic models; simulation methodology; control and adaptation; networks; game theory; and decision theory. Also sought are contributions to learning theory and machine learning that have special relevance to decision making, operations research, and management science. The emphasis is on originality, quality, and importance; correctness alone is not sufficient. Significant developments in operations research and management science not having substantial mathematical interest should be directed to other journals such as Management Science or Operations Research.
期刊最新文献
Dual Solutions in Convex Stochastic Optimization Exit Game with Private Information A Retrospective Approximation Approach for Smooth Stochastic Optimization The Minimax Property in Infinite Two-Person Win-Lose Games Envy-Free Division of Multilayered Cakes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1