{"title":"A self-supervised scheme for ground roll suppression","authors":"Sixiu Liu, Claire Birnie, Andrey Bakulin, Ali Dawood, Ilya Silvestrov, Tariq Alkhalifah","doi":"10.1111/1365-2478.13522","DOIUrl":null,"url":null,"abstract":"<p>In recent years, self-supervised procedures have advanced the field of seismic noise attenuation, due to not requiring a massive amount of clean labelled data in the training stage, an unobtainable requirement for seismic data. However, current self-supervised methods usually suppress simple noise types, such as random and trace-wise noise, instead of the complicated, aliased ground roll. Here, we propose an adaptation of a self-supervised procedure, namely, blind-fan networks, to remove aliased ground roll within seismic shot gathers without any requirement for clean data. The self-supervised denoising procedure is implemented by designing a noise mask with a predefined direction to avoid the coherency of the ground roll being learned by the network while predicting one pixel's value. Numerical experiments on synthetic and field seismic data demonstrate that our method can effectively attenuate aliased ground roll.</p>","PeriodicalId":12793,"journal":{"name":"Geophysical Prospecting","volume":"72 7","pages":"2580-2598"},"PeriodicalIF":1.8000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1365-2478.13522","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Prospecting","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1365-2478.13522","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, self-supervised procedures have advanced the field of seismic noise attenuation, due to not requiring a massive amount of clean labelled data in the training stage, an unobtainable requirement for seismic data. However, current self-supervised methods usually suppress simple noise types, such as random and trace-wise noise, instead of the complicated, aliased ground roll. Here, we propose an adaptation of a self-supervised procedure, namely, blind-fan networks, to remove aliased ground roll within seismic shot gathers without any requirement for clean data. The self-supervised denoising procedure is implemented by designing a noise mask with a predefined direction to avoid the coherency of the ground roll being learned by the network while predicting one pixel's value. Numerical experiments on synthetic and field seismic data demonstrate that our method can effectively attenuate aliased ground roll.
期刊介绍:
Geophysical Prospecting publishes the best in primary research on the science of geophysics as it applies to the exploration, evaluation and extraction of earth resources. Drawing heavily on contributions from researchers in the oil and mineral exploration industries, the journal has a very practical slant. Although the journal provides a valuable forum for communication among workers in these fields, it is also ideally suited to researchers in academic geophysics.