Glial Cell Development and Function in the Zebrafish Central Nervous System

IF 6.9 2区 生物学 Q1 CELL BIOLOGY Cold Spring Harbor perspectives in biology Pub Date : 2024-05-01 DOI:10.1101/cshperspect.a041350
Tim Czopka, Kelly Monk, Francesca Peri
{"title":"Glial Cell Development and Function in the Zebrafish Central Nervous System","authors":"Tim Czopka, Kelly Monk, Francesca Peri","doi":"10.1101/cshperspect.a041350","DOIUrl":null,"url":null,"abstract":"Over the past decades the zebrafish has emerged as an excellent model organism with which to study the biology of all glial cell types in nervous system development, plasticity, and regeneration. In this review, which builds on the earlier work by Lyons and Talbot in 2015, we will summarize how the relative ease to manipulate the zebrafish genome and its suitability for intravital imaging have helped understand principles of glial cell biology with a focus on oligodendrocytes, microglia, and astrocytes. We will highlight recent findings on the diverse properties and functions of these glial cell types in the central nervous system and discuss open questions and future directions of the field.","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Spring Harbor perspectives in biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/cshperspect.a041350","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Over the past decades the zebrafish has emerged as an excellent model organism with which to study the biology of all glial cell types in nervous system development, plasticity, and regeneration. In this review, which builds on the earlier work by Lyons and Talbot in 2015, we will summarize how the relative ease to manipulate the zebrafish genome and its suitability for intravital imaging have helped understand principles of glial cell biology with a focus on oligodendrocytes, microglia, and astrocytes. We will highlight recent findings on the diverse properties and functions of these glial cell types in the central nervous system and discuss open questions and future directions of the field.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
斑马鱼中枢神经系统神经胶质细胞的发育与功能
过去几十年来,斑马鱼已成为研究神经系统发育、可塑性和再生过程中所有神经胶质细胞类型生物学的绝佳模式生物。在这篇综述中,我们将在 Lyons 和 Talbot 于 2015 年发表的早期研究成果的基础上,总结斑马鱼基因组相对容易操作及其适合体内成像的特性是如何帮助理解神经胶质细胞生物学原理的,重点是少突胶质细胞、小胶质细胞和星形胶质细胞。我们将重点介绍这些神经胶质细胞类型在中枢神经系统中的不同特性和功能的最新发现,并讨论该领域的开放性问题和未来发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
15.00
自引率
1.40%
发文量
56
审稿时长
3-8 weeks
期刊介绍: Cold Spring Harbor Perspectives in Biology offers a comprehensive platform in the molecular life sciences, featuring reviews that span molecular, cell, and developmental biology, genetics, neuroscience, immunology, cancer biology, and molecular pathology. This online publication provides in-depth insights into various topics, making it a valuable resource for those engaged in diverse aspects of biological research.
期刊最新文献
Mechanisms of Alternative Lengthening of Telomeres. Rediscovering and Unrediscovering Gregor Mendel: His Life, Times, and Intellectual Context. Teaching School Genetics in the 2020s: Why "Naive" Mendelian Genetics Has to Go. The Role of Microhomology-Mediated End Joining (MMEJ) at Dysfunctional Telomeres. Modeling the Emergence of Circuit Organization and Function during Development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1