A Dialogues Summarization Algorithm Based on Multi-task Learning

IF 2.6 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neural Processing Letters Pub Date : 2024-05-02 DOI:10.1007/s11063-024-11619-8
Haowei Chen, Chen Li, Jiajing Liang, Lihua Tian
{"title":"A Dialogues Summarization Algorithm Based on Multi-task Learning","authors":"Haowei Chen, Chen Li, Jiajing Liang, Lihua Tian","doi":"10.1007/s11063-024-11619-8","DOIUrl":null,"url":null,"abstract":"<p>With the continuous advancement of social information, the number of texts in the form of dialogue between individuals has exponentially increased. However, it is very challenging to review the previous dialogue content before initiating a new conversation. In view of the above background, a new dialogue summarization algorithm based on multi-task learning is first proposed in the paper. Specifically, Minimum Risk Training is used as the loss function to alleviate the problem of inconsistent goals between the training phase and the testing phase. Then, in order to deal with the problem that the model cannot effectively distinguish gender pronouns, a gender pronoun discrimination auxiliary task based on contrast learning is designed to help the model learn to distinguish different gender pronouns. Finally, an auxiliary task of reducing exposure bias is introduced, which involves incorporating the summary generated during inference into another round of training to reduce the difference between the decoder inputs during the training and testing stages. Experimental results show that our model outperforms strong baselines on three public dialogue summarization datasets: SAMSUM, DialogSum, and CSDS.</p>","PeriodicalId":51144,"journal":{"name":"Neural Processing Letters","volume":"57 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Processing Letters","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11063-024-11619-8","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

With the continuous advancement of social information, the number of texts in the form of dialogue between individuals has exponentially increased. However, it is very challenging to review the previous dialogue content before initiating a new conversation. In view of the above background, a new dialogue summarization algorithm based on multi-task learning is first proposed in the paper. Specifically, Minimum Risk Training is used as the loss function to alleviate the problem of inconsistent goals between the training phase and the testing phase. Then, in order to deal with the problem that the model cannot effectively distinguish gender pronouns, a gender pronoun discrimination auxiliary task based on contrast learning is designed to help the model learn to distinguish different gender pronouns. Finally, an auxiliary task of reducing exposure bias is introduced, which involves incorporating the summary generated during inference into another round of training to reduce the difference between the decoder inputs during the training and testing stages. Experimental results show that our model outperforms strong baselines on three public dialogue summarization datasets: SAMSUM, DialogSum, and CSDS.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多任务学习的对话摘要算法
随着社会信息的不断发展,个人之间对话形式的文本数量呈指数级增长。然而,在开始新对话之前回顾之前的对话内容是非常具有挑战性的。鉴于上述背景,本文首先提出了一种基于多任务学习的新型对话摘要算法。具体来说,本文使用最小风险训练作为损失函数,以缓解训练阶段和测试阶段目标不一致的问题。然后,针对模型无法有效区分性别代词的问题,设计了基于对比学习的性别代词区分辅助任务,帮助模型学习区分不同的性别代词。最后,我们还引入了减少暴露偏差的辅助任务,即将推理过程中产生的总结纳入另一轮训练中,以减少训练和测试阶段解码器输入之间的差异。实验结果表明,我们的模型在三个公共对话摘要数据集上的表现优于强基准:SAMSUM、DialogSum 和 CSDS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neural Processing Letters
Neural Processing Letters 工程技术-计算机:人工智能
CiteScore
4.90
自引率
12.90%
发文量
392
审稿时长
2.8 months
期刊介绍: Neural Processing Letters is an international journal publishing research results and innovative ideas on all aspects of artificial neural networks. Coverage includes theoretical developments, biological models, new formal modes, learning, applications, software and hardware developments, and prospective researches. The journal promotes fast exchange of information in the community of neural network researchers and users. The resurgence of interest in the field of artificial neural networks since the beginning of the 1980s is coupled to tremendous research activity in specialized or multidisciplinary groups. Research, however, is not possible without good communication between people and the exchange of information, especially in a field covering such different areas; fast communication is also a key aspect, and this is the reason for Neural Processing Letters
期刊最新文献
Label-Only Membership Inference Attack Based on Model Explanation A Robot Ground Medium Classification Algorithm Based on Feature Fusion and Adaptive Spatio-Temporal Cascade Networks A Deep Learning-Based Hybrid CNN-LSTM Model for Location-Aware Web Service Recommendation A Clustering Pruning Method Based on Multidimensional Channel Information A Neural Network-Based Poisson Solver for Fluid Simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1