NestedBD: Bayesian inference of phylogenetic trees from single-cell copy number profiles under a birth-death model

IF 1.5 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS Algorithms for Molecular Biology Pub Date : 2024-04-29 DOI:10.1186/s13015-024-00264-4
Yushu Liu, Mohammadamin Edrisi, Zhi Yan, Huw A Ogilvie, Luay Nakhleh
{"title":"NestedBD: Bayesian inference of phylogenetic trees from single-cell copy number profiles under a birth-death model","authors":"Yushu Liu, Mohammadamin Edrisi, Zhi Yan, Huw A Ogilvie, Luay Nakhleh","doi":"10.1186/s13015-024-00264-4","DOIUrl":null,"url":null,"abstract":"Copy number aberrations (CNAs) are ubiquitous in many types of cancer. Inferring CNAs from cancer genomic data could help shed light on the initiation, progression, and potential treatment of cancer. While such data have traditionally been available via “bulk sequencing,” the more recently introduced techniques for single-cell DNA sequencing (scDNAseq) provide the type of data that makes CNA inference possible at the single-cell resolution. We introduce a new birth-death evolutionary model of CNAs and a Bayesian method, NestedBD, for the inference of evolutionary trees (topologies and branch lengths with relative mutation rates) from single-cell data. We evaluated NestedBD’s performance using simulated data sets, benchmarking its accuracy against traditional phylogenetic tools as well as state-of-the-art methods. The results show that NestedBD infers more accurate topologies and branch lengths, and that the birth-death model can improve the accuracy of copy number estimation. And when applied to biological data sets, NestedBD infers plausible evolutionary histories of two colorectal cancer samples. NestedBD is available at https://github.com/Androstane/NestedBD .","PeriodicalId":50823,"journal":{"name":"Algorithms for Molecular Biology","volume":"48 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithms for Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13015-024-00264-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Copy number aberrations (CNAs) are ubiquitous in many types of cancer. Inferring CNAs from cancer genomic data could help shed light on the initiation, progression, and potential treatment of cancer. While such data have traditionally been available via “bulk sequencing,” the more recently introduced techniques for single-cell DNA sequencing (scDNAseq) provide the type of data that makes CNA inference possible at the single-cell resolution. We introduce a new birth-death evolutionary model of CNAs and a Bayesian method, NestedBD, for the inference of evolutionary trees (topologies and branch lengths with relative mutation rates) from single-cell data. We evaluated NestedBD’s performance using simulated data sets, benchmarking its accuracy against traditional phylogenetic tools as well as state-of-the-art methods. The results show that NestedBD infers more accurate topologies and branch lengths, and that the birth-death model can improve the accuracy of copy number estimation. And when applied to biological data sets, NestedBD infers plausible evolutionary histories of two colorectal cancer samples. NestedBD is available at https://github.com/Androstane/NestedBD .
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NestedBD:在出生-死亡模型下从单细胞拷贝数剖面对系统发生树进行贝叶斯推断
拷贝数畸变(CNA)在许多类型的癌症中无处不在。从癌症基因组数据中推断 CNAs 有助于揭示癌症的发生、发展和潜在治疗方法。虽然此类数据传统上可通过 "批量测序 "获得,但最近推出的单细胞 DNA 测序(scDNAseq)技术提供的数据类型使单细胞分辨率的 CNA 推断成为可能。我们介绍了一种新的 CNA 出生-死亡进化模型和一种贝叶斯方法 NestedBD,用于从单细胞数据中推断进化树(拓扑结构和具有相对突变率的分支长度)。我们利用模拟数据集对 NestedBD 的性能进行了评估,并将其准确性与传统的系统发生学工具以及最先进的方法进行了比较。结果表明,NestedBD 能推断出更准确的拓扑结构和分支长度,出生-死亡模型能提高拷贝数估计的准确性。当应用于生物数据集时,NestedBD推断出了两个结直肠癌样本的合理进化史。NestedBD 可在 https://github.com/Androstane/NestedBD 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Algorithms for Molecular Biology
Algorithms for Molecular Biology 生物-生化研究方法
CiteScore
2.40
自引率
10.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: Algorithms for Molecular Biology publishes articles on novel algorithms for biological sequence and structure analysis, phylogeny reconstruction, and combinatorial algorithms and machine learning. Areas of interest include but are not limited to: algorithms for RNA and protein structure analysis, gene prediction and genome analysis, comparative sequence analysis and alignment, phylogeny, gene expression, machine learning, and combinatorial algorithms. Where appropriate, manuscripts should describe applications to real-world data. However, pure algorithm papers are also welcome if future applications to biological data are to be expected, or if they address complexity or approximation issues of novel computational problems in molecular biology. Articles about novel software tools will be considered for publication if they contain some algorithmically interesting aspects.
期刊最新文献
On the parameterized complexity of the median and closest problems under some permutation metrics. TINNiK: inference of the tree of blobs of a species network under the coalescent model. New generalized metric based on branch length distance to compare B cell lineage trees. Metric multidimensional scaling for large single-cell datasets using neural networks. Compression algorithm for colored de Bruijn graphs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1