A neural network copula function approach for solving joint basic probability assignment in structural reliability analysis

IF 2.2 3区 工程技术 Q3 ENGINEERING, INDUSTRIAL Quality and Reliability Engineering International Pub Date : 2024-05-04 DOI:10.1002/qre.3568
Rui‐Shi Yang, Li‐Jun Sun, Hai‐Bin Li, Yong Yang
{"title":"A neural network copula function approach for solving joint basic probability assignment in structural reliability analysis","authors":"Rui‐Shi Yang, Li‐Jun Sun, Hai‐Bin Li, Yong Yang","doi":"10.1002/qre.3568","DOIUrl":null,"url":null,"abstract":"Applying evidence theory to structural reliability analysis under epistemic uncertainty, it is necessary to consider the correlation of evidence variables. Among them, solving the joint basic probability assignment (BPA) of the evidence variables is a crucial link. In this study, a solution method of joint BPA based on neural network copula function is proposed. This method is to automatically construct copula function through neural network, which avoids the process of selecting the optimal copula function. Firstly, the neural network copula function is constructed based on the sample set of evidence variables. Then, the expression for solving the joint BPA using the neural network copula function is derived through vectors. Furthermore, the expression is used to map the marginal BPA of evidence variables to joint BPA, thus realizing the solution of joint BPA. Finally, the effectiveness of this method is verified by three examples. The results show that the neural network copula function describes the data distribution better than the optimal copula function selected by the traditional method. In addition, there is actually an error in solving the reliability intervals using the traditional optimal copula function method, whereas the results of this paper's neural network copula function method are more accurate and better for decision making.","PeriodicalId":56088,"journal":{"name":"Quality and Reliability Engineering International","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality and Reliability Engineering International","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/qre.3568","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

Applying evidence theory to structural reliability analysis under epistemic uncertainty, it is necessary to consider the correlation of evidence variables. Among them, solving the joint basic probability assignment (BPA) of the evidence variables is a crucial link. In this study, a solution method of joint BPA based on neural network copula function is proposed. This method is to automatically construct copula function through neural network, which avoids the process of selecting the optimal copula function. Firstly, the neural network copula function is constructed based on the sample set of evidence variables. Then, the expression for solving the joint BPA using the neural network copula function is derived through vectors. Furthermore, the expression is used to map the marginal BPA of evidence variables to joint BPA, thus realizing the solution of joint BPA. Finally, the effectiveness of this method is verified by three examples. The results show that the neural network copula function describes the data distribution better than the optimal copula function selected by the traditional method. In addition, there is actually an error in solving the reliability intervals using the traditional optimal copula function method, whereas the results of this paper's neural network copula function method are more accurate and better for decision making.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
解决结构可靠性分析中联合基本概率分配的神经网络 copula 函数方法
将证据理论应用于认识不确定性下的结构可靠性分析,需要考虑证据变量的相关性。其中,求解证据变量的联合基本概率赋值(BPA)是一个关键环节。本研究提出了一种基于神经网络 copula 函数的联合 BPA 求解方法。该方法通过神经网络自动构建 copula 函数,避免了选择最优 copula 函数的过程。首先,根据证据变量的样本集构建神经网络 copula 函数。然后,通过向量导出使用神经网络 copula 函数求解联合 BPA 的表达式。然后,利用该表达式将证据变量的边际 BPA 映射到联合 BPA,从而实现联合 BPA 的求解。最后,通过三个实例验证了该方法的有效性。结果表明,神经网络 copula 函数比传统方法选择的最优 copula 函数更好地描述了数据分布。此外,使用传统的最优 copula 函数方法求解可靠性区间实际上存在误差,而本文的神经网络 copula 函数方法的结果更加准确,更利于决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.90
自引率
21.70%
发文量
181
审稿时长
6 months
期刊介绍: Quality and Reliability Engineering International is a journal devoted to practical engineering aspects of quality and reliability. A refereed technical journal published eight times per year, it covers the development and practical application of existing theoretical methods, research and industrial practices. Articles in the journal will be concerned with case studies, tutorial-type reviews and also with applications of new or well-known theory to the solution of actual quality and reliability problems in engineering. Papers describing the use of mathematical and statistical tools to solve real life industrial problems are encouraged, provided that the emphasis is placed on practical applications and demonstrated case studies. The scope of the journal is intended to include components, physics of failure, equipment and systems from the fields of electronic, electrical, mechanical and systems engineering. The areas of communications, aerospace, automotive, railways, shipboard equipment, control engineering and consumer products are all covered by the journal. Quality and reliability of hardware as well as software are covered. Papers on software engineering and its impact on product quality and reliability are encouraged. The journal will also cover the management of quality and reliability in the engineering industry. Special issues on a variety of key topics are published every year and contribute to the enhancement of Quality and Reliability Engineering International as a major reference in its field.
期刊最新文献
A probabilistic uncertain linguistic approach for FMEA‐based risk assessment A resilient S2 monitoring chart with novel outlier detectors Dynamic predictive maintenance strategy for multi‐component system based on LSTM and hierarchical clustering Monitoring defects on products' surface by incorporating scan statistics into process monitoring procedures Enhanced health states recognition for electric rudder system using optimized twin support vector machine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1