{"title":"A Fluorescent Probe for Hydrazine Based on 4-hydroxycoumarin with High Selectivity and Sensitivity","authors":"Fang Fang, Wen-Di Han, Fang Ke, Shun Liu, Li-Peng Li, Mei Wu","doi":"10.2174/0115734110281725231218043256","DOIUrl":null,"url":null,"abstract":"Background: Therefore, the development of reliable analytical techniques with high selectivity and sensitivity to detect hydrazine is required for the protection of human health and safety. Objectives: Traditional methods for detecting N2H4 are frequently time-consuming, less accurate, and unsuitable for the analysis of living systems. Numerous fluorescent probes for hydrazine have been produced and gained some valuable results recently. The creation of a simple fluorescent probe for hydrazine detection is the goal of this project Method: In this study, 300 µL of probe 3-methyl-2-oxo-2H-chromen-7-yl propionate (MOCP) was mixed with an equivalent amount of the solution of each analyte to obtain the measurement solution. Following a 10-minute room temperature incubation period, the fluorescence spectra of the resultant solution were recorded. Results: The fluorescence intensity of the probe was noticeably enhanced when N2H4 was added to the probe, but almost no fluorescence enhancement was observed when other competitive ions were added. Conclusion: A hydrazine fluorescent probe based on 4-hydroxycoumarin fluorophore was developed. The probe MOCP displayed high sensitivity and selectivity for hydrazine, with a color change from colourless to blue for detection by the naked eye. Moreover, it demonstrated a low detection limit of 20 nM and a fast reaction time of 30 s.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2174/0115734110281725231218043256","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Therefore, the development of reliable analytical techniques with high selectivity and sensitivity to detect hydrazine is required for the protection of human health and safety. Objectives: Traditional methods for detecting N2H4 are frequently time-consuming, less accurate, and unsuitable for the analysis of living systems. Numerous fluorescent probes for hydrazine have been produced and gained some valuable results recently. The creation of a simple fluorescent probe for hydrazine detection is the goal of this project Method: In this study, 300 µL of probe 3-methyl-2-oxo-2H-chromen-7-yl propionate (MOCP) was mixed with an equivalent amount of the solution of each analyte to obtain the measurement solution. Following a 10-minute room temperature incubation period, the fluorescence spectra of the resultant solution were recorded. Results: The fluorescence intensity of the probe was noticeably enhanced when N2H4 was added to the probe, but almost no fluorescence enhancement was observed when other competitive ions were added. Conclusion: A hydrazine fluorescent probe based on 4-hydroxycoumarin fluorophore was developed. The probe MOCP displayed high sensitivity and selectivity for hydrazine, with a color change from colourless to blue for detection by the naked eye. Moreover, it demonstrated a low detection limit of 20 nM and a fast reaction time of 30 s.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.