Hierarchical extension H2/H∞ control approach for active front steering system of vehicle

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-04-30 DOI:10.1177/09544070241244837
Chen Zhou, Yu-ze Wu, Zheng Wang, Fei-xiang Xu
{"title":"Hierarchical extension H2/H∞ control approach for active front steering system of vehicle","authors":"Chen Zhou, Yu-ze Wu, Zheng Wang, Fei-xiang Xu","doi":"10.1177/09544070241244837","DOIUrl":null,"url":null,"abstract":"Aiming at improving the vehicle handling stability and vehicle control performance by conventional H2/H∞ control, this paper investigates the active front steering (AFS) system by proposing a hierarchical extension H2/H∞ control strategy. Considering uncertainties and the vehicle handling stability, a mixed H2/H∞ control method is presented to generate the additional front wheel angle through tracking the desired vehicle yaw rate in the upper level. Furthermore, to enhance the H2/H∞ control effect, the novel extension control is proposed to adjust the H2/H∞ control signal dynamically according to different domains defined by the vehicle states. To track front wheel angle from the upper level, this study puts forward the fractional-order proportional-integral-derivative (FOPID) controller for driving the electro-hydraulic steering actuators. The hardware-in-the-loop experiments are performed to demonstrate the hierarchical control theory. The test results indicate that the proposed hierarchical extension H2/H∞ control strategy improves the vehicle cornering stability well, as well as can make the vehicle have better handling stability than conventional H2/H∞ and sliding mode control.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544070241244837","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Aiming at improving the vehicle handling stability and vehicle control performance by conventional H2/H∞ control, this paper investigates the active front steering (AFS) system by proposing a hierarchical extension H2/H∞ control strategy. Considering uncertainties and the vehicle handling stability, a mixed H2/H∞ control method is presented to generate the additional front wheel angle through tracking the desired vehicle yaw rate in the upper level. Furthermore, to enhance the H2/H∞ control effect, the novel extension control is proposed to adjust the H2/H∞ control signal dynamically according to different domains defined by the vehicle states. To track front wheel angle from the upper level, this study puts forward the fractional-order proportional-integral-derivative (FOPID) controller for driving the electro-hydraulic steering actuators. The hardware-in-the-loop experiments are performed to demonstrate the hierarchical control theory. The test results indicate that the proposed hierarchical extension H2/H∞ control strategy improves the vehicle cornering stability well, as well as can make the vehicle have better handling stability than conventional H2/H∞ and sliding mode control.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
汽车主动前转向系统的分层扩展 H2/H∞ 控制方法
为了改善传统 H2/H∞ 控制的车辆操纵稳定性和车辆控制性能,本文通过提出分层扩展 H2/H∞ 控制策略,对主动前转向(AFS)系统进行了研究。考虑到不确定性和车辆操纵稳定性,本文提出了一种混合 H2/H∞ 控制方法,通过在上层跟踪所需的车辆偏航率来产生额外的前轮角度。此外,为增强 H2/H∞ 控制效果,还提出了新型扩展控制,可根据车辆状态定义的不同域动态调整 H2/H∞ 控制信号。为了从上层跟踪前轮角度,本研究提出了用于驱动电液转向执行器的分数阶比例-积分-派生(FOPID)控制器。为证明分层控制理论,进行了硬件在环实验。试验结果表明,与传统的 H2/H∞ 和滑模控制相比,所提出的分层扩展 H2/H∞ 控制策略能很好地改善车辆的转弯稳定性,并能使车辆具有更好的操纵稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1