{"title":"Research on DCT shift strategy for various driving style based on “driver-vehicle-cloud” machine learning","authors":"Qing Yang, Guangqiang Wu, Shaozhe Zhang","doi":"10.1177/09544070241246605","DOIUrl":null,"url":null,"abstract":"In order to solve the problem that the DCT static shift strategy cannot adapt to the difference in driving style, the driving style identification model based on multi-dimensional data mining and intelligent algorithm heavily depends on vehicle terminal data storage and calculation, an intelligent shift strategy based on “driver-vehicle-cloud” cooperative control is proposed. Firstly, the dynamic model of the DCT vehicle is analyzed, the primary shift schedule is calculated, and a method to adaptively modify the shifting schedule of DCT according to driving style is proposed. Then, many vehicle driving data are collected, cleaned, and reconstructed by wavelet denoising and other methods, and a driving style database with 80-dimensional features is constructed. Five essential features are selected by the ReliefF method, and the driving style recognition model is constructed by combining random forest, support vector machine, naive Bayesian, and other algorithms. Finally, the support vector machine model with the highest precision is selected, and the “driver-vehicle-cloud” collaborative control system is deployed using cloud computing and vehicle-cloud collaborative technology. The experiment car test shows that the system can identify the driver’s driving style in real time and realize the differential shift schedule and driving experience of DCT.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544070241246605","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In order to solve the problem that the DCT static shift strategy cannot adapt to the difference in driving style, the driving style identification model based on multi-dimensional data mining and intelligent algorithm heavily depends on vehicle terminal data storage and calculation, an intelligent shift strategy based on “driver-vehicle-cloud” cooperative control is proposed. Firstly, the dynamic model of the DCT vehicle is analyzed, the primary shift schedule is calculated, and a method to adaptively modify the shifting schedule of DCT according to driving style is proposed. Then, many vehicle driving data are collected, cleaned, and reconstructed by wavelet denoising and other methods, and a driving style database with 80-dimensional features is constructed. Five essential features are selected by the ReliefF method, and the driving style recognition model is constructed by combining random forest, support vector machine, naive Bayesian, and other algorithms. Finally, the support vector machine model with the highest precision is selected, and the “driver-vehicle-cloud” collaborative control system is deployed using cloud computing and vehicle-cloud collaborative technology. The experiment car test shows that the system can identify the driver’s driving style in real time and realize the differential shift schedule and driving experience of DCT.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.