Artificial Intelligence in Cardiology and Atherosclerosis in the Context of Precision Medicine: A Scoping Review

IF 1.8 4区 计算机科学 Q3 ENGINEERING, BIOMEDICAL Applied Bionics and Biomechanics Pub Date : 2024-04-30 DOI:10.1155/2024/2991243
Oliwia Kolaszyńska, Jacek Lorkowski
{"title":"Artificial Intelligence in Cardiology and Atherosclerosis in the Context of Precision Medicine: A Scoping Review","authors":"Oliwia Kolaszyńska, Jacek Lorkowski","doi":"10.1155/2024/2991243","DOIUrl":null,"url":null,"abstract":"Cardiovascular diseases remain the main cause of death worldwide which makes it essential to better understand, diagnose, and treat atherosclerosis. Artificial intelligence (AI) and novel technological solutions offer us new possibilities and enable the practice of individually tailored medicine. The study was performed using the PRISMA protocol. As of January 10, 2023, the analysis has been based on a review of 457 identified articles in PubMed and MEDLINE databases. The search covered reviews, original articles, meta-analyses, comments, and editorials published in the years 2009–2023. In total, 123 articles met inclusion criteria. The results were divided into the subsections presented in the review (genome-wide association studies, radiomics, and other studies). This paper presents actual knowledge concerning atherosclerosis, in silico, and big data analyses in cardiology that affect the way medicine is practiced in order to create an individual approach and adjust the therapy of atherosclerosis.","PeriodicalId":8029,"journal":{"name":"Applied Bionics and Biomechanics","volume":"91 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Bionics and Biomechanics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1155/2024/2991243","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Cardiovascular diseases remain the main cause of death worldwide which makes it essential to better understand, diagnose, and treat atherosclerosis. Artificial intelligence (AI) and novel technological solutions offer us new possibilities and enable the practice of individually tailored medicine. The study was performed using the PRISMA protocol. As of January 10, 2023, the analysis has been based on a review of 457 identified articles in PubMed and MEDLINE databases. The search covered reviews, original articles, meta-analyses, comments, and editorials published in the years 2009–2023. In total, 123 articles met inclusion criteria. The results were divided into the subsections presented in the review (genome-wide association studies, radiomics, and other studies). This paper presents actual knowledge concerning atherosclerosis, in silico, and big data analyses in cardiology that affect the way medicine is practiced in order to create an individual approach and adjust the therapy of atherosclerosis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
精准医疗背景下心脏病学和动脉粥样硬化中的人工智能:范围综述
心血管疾病仍然是全球死亡的主要原因,因此必须更好地了解、诊断和治疗动脉粥样硬化。人工智能(AI)和新颖的技术解决方案为我们提供了新的可能性,使我们能够实践量身定制的医疗。本研究采用 PRISMA 协议进行。截至 2023 年 1 月 10 日,分析基于对 PubMed 和 MEDLINE 数据库中 457 篇已识别文章的审查。搜索范围包括 2009-2023 年间发表的综述、原创文章、荟萃分析、评论和社论。共有 123 篇文章符合纳入标准。研究结果分为综述中的几个子部分(全基因组关联研究、放射组学和其他研究)。本文介绍了心脏病学中有关动脉粥样硬化、硅学和大数据分析的实际知识,这些知识影响着医学实践的方式,以便创建个性化方法并调整动脉粥样硬化的治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Bionics and Biomechanics
Applied Bionics and Biomechanics ENGINEERING, BIOMEDICAL-ROBOTICS
自引率
4.50%
发文量
338
审稿时长
>12 weeks
期刊介绍: Applied Bionics and Biomechanics publishes papers that seek to understand the mechanics of biological systems, or that use the functions of living organisms as inspiration for the design new devices. Such systems may be used as artificial replacements, or aids, for their original biological purpose, or be used in a different setting altogether.
期刊最新文献
A Pilot Study on Developed Shoes That Enhance Gait Parameters Without Increasing Muscle Activity. Real-Time Gait Intention Recognition for Active Control of Unilateral Knee Exoskeleton. Design and Control of an Upper Limb Bionic Exoskeleton Rehabilitation Device Based on Tensegrity Structure. The Effect of Different Degrees of Ankle Dorsiflexion Restriction on the Biomechanics of the Lower Extremity in Stop-Jumping. Evaluation of Cyclic Fatigue Resistance of Novel Replica-Like Instruments in Static Test Model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1