Group Behavior Prediction and Evolution in Social Networks

IF 5.6 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE Intelligent Systems Pub Date : 2024-04-30 DOI:10.1109/mis.2024.3366668
Jingchao Wang, Xinyi Zhang, Weimin Li, Xiao Yu, Fangfang Liu, Qun Jin
{"title":"Group Behavior Prediction and Evolution in Social Networks","authors":"Jingchao Wang, Xinyi Zhang, Weimin Li, Xiao Yu, Fangfang Liu, Qun Jin","doi":"10.1109/mis.2024.3366668","DOIUrl":null,"url":null,"abstract":"Group behavior prediction and evolution in social networks aims to accurately predict and model trends and patterns of group behavior through detailed analysis of massive user data, which is of great significance to the formulation of marketing strategies, user experience, and business strategies. Therefore, experts in various fields are actively exploring the potential of social network data to develop more accurate group behavior prediction and evolution models. This article provides an overview of these studies and explores the challenges and opportunities faced by group behavior prediction and evolution in social networks.","PeriodicalId":13160,"journal":{"name":"IEEE Intelligent Systems","volume":"4 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/mis.2024.3366668","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Group behavior prediction and evolution in social networks aims to accurately predict and model trends and patterns of group behavior through detailed analysis of massive user data, which is of great significance to the formulation of marketing strategies, user experience, and business strategies. Therefore, experts in various fields are actively exploring the potential of social network data to develop more accurate group behavior prediction and evolution models. This article provides an overview of these studies and explores the challenges and opportunities faced by group behavior prediction and evolution in social networks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
社交网络中的群体行为预测与演变
社交网络中的群体行为预测与演化旨在通过对海量用户数据的详细分析,对群体行为的趋势和模式进行准确预测和建模,这对营销策略、用户体验和商业战略的制定具有重要意义。因此,各领域专家都在积极探索社交网络数据的潜力,以开发更准确的群体行为预测和演化模型。本文概述了这些研究,并探讨了社交网络中群体行为预测和演化所面临的挑战和机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Intelligent Systems
IEEE Intelligent Systems 工程技术-工程:电子与电气
CiteScore
13.80
自引率
3.10%
发文量
122
审稿时长
1 months
期刊介绍: IEEE Intelligent Systems serves users, managers, developers, researchers, and purchasers who are interested in intelligent systems and artificial intelligence, with particular emphasis on applications. Typically they are degreed professionals, with backgrounds in engineering, hard science, or business. The publication emphasizes current practice and experience, together with promising new ideas that are likely to be used in the near future. Sample topic areas for feature articles include knowledge-based systems, intelligent software agents, natural-language processing, technologies for knowledge management, machine learning, data mining, adaptive and intelligent robotics, knowledge-intensive processing on the Web, and social issues relevant to intelligent systems. Also encouraged are application features, covering practice at one or more companies or laboratories; full-length product stories (which require refereeing by at least three reviewers); tutorials; surveys; and case studies. Often issues are theme-based and collect articles around a contemporary topic under the auspices of a Guest Editor working with the EIC.
期刊最新文献
FL4SDN: A Fast-Convergent Federated Learning for Distributed and Heterogeneous SDN Large-scale Package Deliveries with Unmanned Aerial Vehicles using Collective Learning AdaCLF: An Adaptive Curriculum Learning Framework for Emotional Support Conversation IEEE CS Call for Papers IEEE Annals of the History of Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1