Gang Wang, Mian Wang, ZiHan Wang, GuangTao Xu, MingHao Zhao, Lingxiao Li
{"title":"Characterization of hydrogen embrittlement sensitivity of 18CrNiMo7-6 alloy steel surface-modified layer based on scratch method","authors":"Gang Wang, Mian Wang, ZiHan Wang, GuangTao Xu, MingHao Zhao, Lingxiao Li","doi":"10.1108/acmm-02-2024-2967","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>The purpose of this paper is to assess the hydrogen embrittlement sensitivity of carbon gradient heterostructure materials and to verify the reliability of the scratch method.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>The surface-modified layer of 18CrNiMo7-6 alloy steel was delaminated to study its hydrogen embrittlement characteristics via hydrogen permeation, electrochemical hydrogen charging and scratch experiments.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The results showed that the diffusion coefficients of hydrogen in the surface and matrix layers are 3.28 × 10<sup>−7</sup> and 16.67 × 10<sup>−7</sup> cm<sup>2</sup>/s, respectively. The diffusible-hydrogen concentration of the material increases with increasing hydrogen-charging current density. For a given hydrogen-charging current density, the diffusible-hydrogen concentration gradually decreases with increasing depth in the surface-modified layer. Fracture toughness decreases with increasing diffusible-hydrogen concentration, so the susceptibility to hydrogen embrittlement decreases with increasing depth in the surface-modified layer.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>The reliability of the scratch method in evaluating the fracture toughness of the surface-modified layer material is verified. An empirical formula is given for fracture toughness as a function of diffused-hydrogen concentration.</p><!--/ Abstract__block -->","PeriodicalId":8217,"journal":{"name":"Anti-corrosion Methods and Materials","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anti-corrosion Methods and Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1108/acmm-02-2024-2967","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
The purpose of this paper is to assess the hydrogen embrittlement sensitivity of carbon gradient heterostructure materials and to verify the reliability of the scratch method.
Design/methodology/approach
The surface-modified layer of 18CrNiMo7-6 alloy steel was delaminated to study its hydrogen embrittlement characteristics via hydrogen permeation, electrochemical hydrogen charging and scratch experiments.
Findings
The results showed that the diffusion coefficients of hydrogen in the surface and matrix layers are 3.28 × 10−7 and 16.67 × 10−7 cm2/s, respectively. The diffusible-hydrogen concentration of the material increases with increasing hydrogen-charging current density. For a given hydrogen-charging current density, the diffusible-hydrogen concentration gradually decreases with increasing depth in the surface-modified layer. Fracture toughness decreases with increasing diffusible-hydrogen concentration, so the susceptibility to hydrogen embrittlement decreases with increasing depth in the surface-modified layer.
Originality/value
The reliability of the scratch method in evaluating the fracture toughness of the surface-modified layer material is verified. An empirical formula is given for fracture toughness as a function of diffused-hydrogen concentration.
期刊介绍:
Anti-Corrosion Methods and Materials publishes a broad coverage of the materials and techniques employed in corrosion prevention. Coverage is essentially of a practical nature and designed to be of material benefit to those working in the field. Proven applications are covered together with company news and new product information. Anti-Corrosion Methods and Materials now also includes research articles that reflect the most interesting and strategically important research and development activities from around the world.
Every year, industry pays a massive and rising cost for its corrosion problems. Research and development into new materials, processes and initiatives to combat this loss is increasing, and new findings are constantly coming to light which can help to beat corrosion problems throughout industry. This journal uniquely focuses on these exciting developments to make essential reading for anyone aiming to regain profits lost through corrosion difficulties.
• New methods, materials and software
• New developments in research and industry
• Stainless steels
• Protection of structural steelwork
• Industry update, conference news, dates and events
• Environmental issues
• Health & safety, including EC regulations
• Corrosion monitoring and plant health assessment
• The latest equipment and processes
• Corrosion cost and corrosion risk management.