A credible traffic prediction method based on self-supervised causal discovery

IF 7.3 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Science China Information Sciences Pub Date : 2024-04-26 DOI:10.1007/s11432-023-3899-1
Dan Wang, Yingjie Liu, Bin Song
{"title":"A credible traffic prediction method based on self-supervised causal discovery","authors":"Dan Wang, Yingjie Liu, Bin Song","doi":"10.1007/s11432-023-3899-1","DOIUrl":null,"url":null,"abstract":"<p>Next-generation wireless network aims to support low-latency, high-speed data transmission services by incorporating artificial intelligence (AI) technologies. To fulfill this promise, AI-based network traffic prediction is essential for pre-allocating resources, such as bandwidth and computing power. This can help reduce network congestion and improve the quality of service (QoS) for users. Most studies achieve future traffic prediction by exploiting deep learning and reinforcement learning, to mine spatio-temporal correlated variables. Nevertheless, the prediction results obtained only by the spatio-temporal correlated variables cannot reflect real traffic changes. This phenomenon prevents the true prediction variables from being inferred, making the prediction algorithm perform poorly. Inspired by causal science, we propose a novel network traffic prediction method based on self-supervised spatio-temporal causal discovery (SSTCD). We first introduce the Granger causal discovery algorithm to build a causal graph among prediction variables and obtain spatio-temporal causality in the observed data, which reflects the real reasons affecting traffic changes. Next, a graph neural network (GNN) is adopted to incorporate causality for traffic prediction. Furthermore, we propose a self-supervised method to implement causal discovery to to address the challenge of lacking ground-truth causal graphs in the observed data. Experimental results demonstrate the effectiveness of the SSTCD method.</p>","PeriodicalId":21618,"journal":{"name":"Science China Information Sciences","volume":"18 1","pages":""},"PeriodicalIF":7.3000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11432-023-3899-1","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Next-generation wireless network aims to support low-latency, high-speed data transmission services by incorporating artificial intelligence (AI) technologies. To fulfill this promise, AI-based network traffic prediction is essential for pre-allocating resources, such as bandwidth and computing power. This can help reduce network congestion and improve the quality of service (QoS) for users. Most studies achieve future traffic prediction by exploiting deep learning and reinforcement learning, to mine spatio-temporal correlated variables. Nevertheless, the prediction results obtained only by the spatio-temporal correlated variables cannot reflect real traffic changes. This phenomenon prevents the true prediction variables from being inferred, making the prediction algorithm perform poorly. Inspired by causal science, we propose a novel network traffic prediction method based on self-supervised spatio-temporal causal discovery (SSTCD). We first introduce the Granger causal discovery algorithm to build a causal graph among prediction variables and obtain spatio-temporal causality in the observed data, which reflects the real reasons affecting traffic changes. Next, a graph neural network (GNN) is adopted to incorporate causality for traffic prediction. Furthermore, we propose a self-supervised method to implement causal discovery to to address the challenge of lacking ground-truth causal graphs in the observed data. Experimental results demonstrate the effectiveness of the SSTCD method.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自监督因果发现的可信交通预测方法
下一代无线网络旨在通过采用人工智能(AI)技术来支持低延迟、高速数据传输服务。要实现这一目标,基于人工智能的网络流量预测对于预先分配带宽和计算能力等资源至关重要。这有助于减少网络拥塞,提高用户的服务质量(QoS)。大多数研究通过利用深度学习和强化学习挖掘时空相关变量来实现未来流量预测。然而,仅通过时空相关变量获得的预测结果无法反映真实的流量变化。这种现象导致无法推断出真正的预测变量,从而使预测算法表现不佳。受因果科学的启发,我们提出了一种基于自监督时空因果发现(SSTCD)的新型网络流量预测方法。首先,我们引入格兰杰因果发现算法,在预测变量之间建立因果图,获得观测数据的时空因果关系,从而反映出影响流量变化的真正原因。接下来,我们采用图神经网络(GNN)将因果关系纳入交通预测。此外,我们还提出了一种自监督方法来实现因果发现,以解决观测数据中缺乏地面真实因果图的难题。实验结果证明了 SSTCD 方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Science China Information Sciences
Science China Information Sciences COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
12.60
自引率
5.70%
发文量
224
审稿时长
8.3 months
期刊介绍: Science China Information Sciences is a dedicated journal that showcases high-quality, original research across various domains of information sciences. It encompasses Computer Science & Technologies, Control Science & Engineering, Information & Communication Engineering, Microelectronics & Solid-State Electronics, and Quantum Information, providing a platform for the dissemination of significant contributions in these fields.
期刊最新文献
Weighted sum power maximization for STAR-RIS-aided SWIPT systems with nonlinear energy harvesting TSCompiler: efficient compilation framework for dynamic-shape models NeurDB: an AI-powered autonomous data system State and parameter identification of linearized water wave equation via adjoint method An STP look at logical blocking of finite state machines: formulation, detection, and search
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1