Zheng Bian, Feng Tian, Zongwen Li, Xiangwei Su, Tianjiao Zhang, Jialei Miao, Bin Yu, Yang Xu, Yuda Zhao
{"title":"Heterogeneous integration of 2D materials on Si charge-coupled devices as optical memory","authors":"Zheng Bian, Feng Tian, Zongwen Li, Xiangwei Su, Tianjiao Zhang, Jialei Miao, Bin Yu, Yang Xu, Yuda Zhao","doi":"10.1007/s11432-024-3993-5","DOIUrl":null,"url":null,"abstract":"<p>Optical memory integrates the function of optical sensing in memory devices, remarkably promoting the interconnection between sensory and memory terminals. Silicon charge-coupled photodetectors and floating gate memory have been widely used in imaging and storage technologies, respectively. However, the heterogeneous integration of the two devices requires technological innovation and complex electrical connections. In this work, we adopt a three-dimensional layer stacking method to design a novel optical memory device. On the top of Si charge-coupled photodetectors, we successively deposit two-dimensional graphene, hexagonal boron nitride, and molybdenum disulfide as a floating gate layer, a tunneling layer, and a readout layer, respectively. By applying a gate bias on lightly doped Si, a deep depletion layer is formed with a high voltage potential drop. Under dark conditions, the depletion layer cannot be filled, and the electric field across the h-BN tunnel barrier is relatively small. Under light irradiation, the deep depletion layer is gradually filled, and the h-BN tunneling layer withstands the increasing electric field, resulting in charge storage in the floating gate layer. Based on this mechanism, the device exhibits a gate voltage-dependent operation mode, including an integrated optical sensing-memory mode and an electrically driven storage mode. Under moderate gate voltage, the device can effectively detect the optical information with varied intensity and store the optical information in the floating gate, displaying optically controlled memory characteristics. Our work demonstrates a compact device structure for optical memory and displays excellent optically controlled memory performance, which can be applied in artificial vision systems.</p>","PeriodicalId":21618,"journal":{"name":"Science China Information Sciences","volume":"4 1","pages":""},"PeriodicalIF":7.3000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11432-024-3993-5","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Optical memory integrates the function of optical sensing in memory devices, remarkably promoting the interconnection between sensory and memory terminals. Silicon charge-coupled photodetectors and floating gate memory have been widely used in imaging and storage technologies, respectively. However, the heterogeneous integration of the two devices requires technological innovation and complex electrical connections. In this work, we adopt a three-dimensional layer stacking method to design a novel optical memory device. On the top of Si charge-coupled photodetectors, we successively deposit two-dimensional graphene, hexagonal boron nitride, and molybdenum disulfide as a floating gate layer, a tunneling layer, and a readout layer, respectively. By applying a gate bias on lightly doped Si, a deep depletion layer is formed with a high voltage potential drop. Under dark conditions, the depletion layer cannot be filled, and the electric field across the h-BN tunnel barrier is relatively small. Under light irradiation, the deep depletion layer is gradually filled, and the h-BN tunneling layer withstands the increasing electric field, resulting in charge storage in the floating gate layer. Based on this mechanism, the device exhibits a gate voltage-dependent operation mode, including an integrated optical sensing-memory mode and an electrically driven storage mode. Under moderate gate voltage, the device can effectively detect the optical information with varied intensity and store the optical information in the floating gate, displaying optically controlled memory characteristics. Our work demonstrates a compact device structure for optical memory and displays excellent optically controlled memory performance, which can be applied in artificial vision systems.
期刊介绍:
Science China Information Sciences is a dedicated journal that showcases high-quality, original research across various domains of information sciences. It encompasses Computer Science & Technologies, Control Science & Engineering, Information & Communication Engineering, Microelectronics & Solid-State Electronics, and Quantum Information, providing a platform for the dissemination of significant contributions in these fields.