Gesture-mmWAVE: Compact and Accurate Millimeter-Wave Radar-Based Dynamic Gesture Recognition for Embedded Devices

IF 3.5 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE Transactions on Human-Machine Systems Pub Date : 2024-04-29 DOI:10.1109/THMS.2024.3385124
Biao Jin;Xiao Ma;Bojun Hu;Zhenkai Zhang;Zhuxian Lian;Biao Wang
{"title":"Gesture-mmWAVE: Compact and Accurate Millimeter-Wave Radar-Based Dynamic Gesture Recognition for Embedded Devices","authors":"Biao Jin;Xiao Ma;Bojun Hu;Zhenkai Zhang;Zhuxian Lian;Biao Wang","doi":"10.1109/THMS.2024.3385124","DOIUrl":null,"url":null,"abstract":"Dynamic gesture recognition using millimeter-wave radar is a promising contactless mode of human–computer interaction with wide-ranging applications in various fields, such as intelligent homes, automatic driving, and sign language translation. However, the existing models have too many parameters and are unsuitable for embedded devices. To address this issue, we propose a dynamic gesture recognition method (named “Gesture-mmWAVE”) using millimeter-wave radar based on the multilevel feature fusion (MLFF) and transformer model. We first arrange each frame of the original echo collected by the frequency-modulated continuously modulated millimeter-wave radar in the Chirps × Samples format. Then, we use a 2-D fast Fourier transform to obtain the range-time map and Doppler-time map of gestures while improving the echo signal-to-noise ratio by coherent accumulation. Furthermore, we build an MLFF-transformer network for dynamic gesture recognition. The MLFF-transformer network comprises an MLFF module and a transformer module. The MLFF module employs the residual strategies to fuse the shallow, middle, and deep features and reduce the parameter size of the model using depthwise-separable convolution. The transformer module captures the global features of dynamic gestures and focuses on essential features using the multihead attention mechanism. The experimental results demonstrate that our proposed model achieves an average recognition accuracy of 99.11% on a dataset with 10% random interference. The scale of the proposed model is only 0.42M, which is 25% of that of the MobileNet V3-samll model. Thus, this method has excellent potential for application in embedded devices due to its small parameter size and high recognition accuracy.","PeriodicalId":48916,"journal":{"name":"IEEE Transactions on Human-Machine Systems","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Human-Machine Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10509809/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Dynamic gesture recognition using millimeter-wave radar is a promising contactless mode of human–computer interaction with wide-ranging applications in various fields, such as intelligent homes, automatic driving, and sign language translation. However, the existing models have too many parameters and are unsuitable for embedded devices. To address this issue, we propose a dynamic gesture recognition method (named “Gesture-mmWAVE”) using millimeter-wave radar based on the multilevel feature fusion (MLFF) and transformer model. We first arrange each frame of the original echo collected by the frequency-modulated continuously modulated millimeter-wave radar in the Chirps × Samples format. Then, we use a 2-D fast Fourier transform to obtain the range-time map and Doppler-time map of gestures while improving the echo signal-to-noise ratio by coherent accumulation. Furthermore, we build an MLFF-transformer network for dynamic gesture recognition. The MLFF-transformer network comprises an MLFF module and a transformer module. The MLFF module employs the residual strategies to fuse the shallow, middle, and deep features and reduce the parameter size of the model using depthwise-separable convolution. The transformer module captures the global features of dynamic gestures and focuses on essential features using the multihead attention mechanism. The experimental results demonstrate that our proposed model achieves an average recognition accuracy of 99.11% on a dataset with 10% random interference. The scale of the proposed model is only 0.42M, which is 25% of that of the MobileNet V3-samll model. Thus, this method has excellent potential for application in embedded devices due to its small parameter size and high recognition accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gesture-mmWAVE:基于毫米波雷达的嵌入式设备紧凑而精确的动态手势识别技术
利用毫米波雷达进行动态手势识别是一种前景广阔的非接触式人机交互模式,在智能家居、自动驾驶和手语翻译等多个领域有着广泛的应用。然而,现有模型参数过多,不适合嵌入式设备。针对这一问题,我们提出了一种基于多级特征融合(MLFF)和变换器模型的毫米波雷达动态手势识别方法(命名为 "Gesture-mmWAVE")。我们首先将频率调制连续调制毫米波雷达采集到的原始回波的每一帧排列成 Chirps × Samples 格式。然后,我们使用二维快速傅立叶变换来获取手势的测距-时间图和多普勒-时间图,同时通过相干累积来提高回波信噪比。此外,我们还建立了一个用于动态手势识别的 MLFF 变换器网络。MLFF- 变压器网络由 MLFF 模块和变压器模块组成。MLFF 模块采用残差策略融合浅层、中层和深层特征,并利用深度分离卷积减少模型的参数大小。转换器模块捕捉动态手势的全局特征,并利用多头注意力机制聚焦于基本特征。实验结果表明,我们提出的模型在具有 10% 随机干扰的数据集上实现了 99.11% 的平均识别准确率。所提模型的规模仅为 0.42M,是 MobileNet V3-samll 模型的 25%。因此,由于参数小、识别准确率高,这种方法在嵌入式设备中具有很好的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Human-Machine Systems
IEEE Transactions on Human-Machine Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, CYBERNETICS
CiteScore
7.10
自引率
11.10%
发文量
136
期刊介绍: The scope of the IEEE Transactions on Human-Machine Systems includes the fields of human machine systems. It covers human systems and human organizational interactions including cognitive ergonomics, system test and evaluation, and human information processing concerns in systems and organizations.
期刊最新文献
Table of Contents Present a World of Opportunity IEEE Systems, Man, and Cybernetics Society Information IEEE Transactions on Human-Machine Systems Information for Authors TechRxiv: Share Your Preprint Research with the World!
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1