Ryan J. R. Jones, Yungchieh Lai, Dan Guevarra, Kevin Kan, Joel A. Haber and John M. Gregoire
{"title":"Accelerated screening of gas diffusion electrodes for carbon dioxide reduction†","authors":"Ryan J. R. Jones, Yungchieh Lai, Dan Guevarra, Kevin Kan, Joel A. Haber and John M. Gregoire","doi":"10.1039/D4DD00061G","DOIUrl":null,"url":null,"abstract":"<p >The electrochemical conversion of carbon dioxide to chemicals and fuels is expected to be a key sustainability technology. Electrochemical carbon dioxide reduction technologies are challenged by several factors, including the limited solubility of carbon dioxide in aqueous electrolyte as well as the difficulty in utilizing polymer electrolytes. These considerations have driven system designs to incorporate gas diffusion electrodes (GDEs) to bring the electrocatalyst in contact with both a gaseous reactant/product stream as well as a liquid electrolyte. GDE optimization typically results from manual tuning by select experts. Automated preparation and operation of GDE cells could be a watershed for the systematic study of, and ultimately the development of a materials acceleration platform (MAP) for, catalyst discovery and system optimization. Toward this end, we present the automated GDE (AutoGDE) testing system. Given a catalyst-coated GDE, AutoGDE automates the insertion of the GDE into an electrochemical cell, the liquid and gas handling, the quantification of gaseous reaction products <em>via</em> online mass spectroscopy, and the archiving of the liquid electrolyte for subsequent analysis.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/dd/d4dd00061g?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/dd/d4dd00061g","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The electrochemical conversion of carbon dioxide to chemicals and fuels is expected to be a key sustainability technology. Electrochemical carbon dioxide reduction technologies are challenged by several factors, including the limited solubility of carbon dioxide in aqueous electrolyte as well as the difficulty in utilizing polymer electrolytes. These considerations have driven system designs to incorporate gas diffusion electrodes (GDEs) to bring the electrocatalyst in contact with both a gaseous reactant/product stream as well as a liquid electrolyte. GDE optimization typically results from manual tuning by select experts. Automated preparation and operation of GDE cells could be a watershed for the systematic study of, and ultimately the development of a materials acceleration platform (MAP) for, catalyst discovery and system optimization. Toward this end, we present the automated GDE (AutoGDE) testing system. Given a catalyst-coated GDE, AutoGDE automates the insertion of the GDE into an electrochemical cell, the liquid and gas handling, the quantification of gaseous reaction products via online mass spectroscopy, and the archiving of the liquid electrolyte for subsequent analysis.