Accelerated screening of gas diffusion electrodes for carbon dioxide reduction†

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY Digital discovery Pub Date : 2024-04-30 DOI:10.1039/D4DD00061G
Ryan J. R. Jones, Yungchieh Lai, Dan Guevarra, Kevin Kan, Joel A. Haber and John M. Gregoire
{"title":"Accelerated screening of gas diffusion electrodes for carbon dioxide reduction†","authors":"Ryan J. R. Jones, Yungchieh Lai, Dan Guevarra, Kevin Kan, Joel A. Haber and John M. Gregoire","doi":"10.1039/D4DD00061G","DOIUrl":null,"url":null,"abstract":"<p >The electrochemical conversion of carbon dioxide to chemicals and fuels is expected to be a key sustainability technology. Electrochemical carbon dioxide reduction technologies are challenged by several factors, including the limited solubility of carbon dioxide in aqueous electrolyte as well as the difficulty in utilizing polymer electrolytes. These considerations have driven system designs to incorporate gas diffusion electrodes (GDEs) to bring the electrocatalyst in contact with both a gaseous reactant/product stream as well as a liquid electrolyte. GDE optimization typically results from manual tuning by select experts. Automated preparation and operation of GDE cells could be a watershed for the systematic study of, and ultimately the development of a materials acceleration platform (MAP) for, catalyst discovery and system optimization. Toward this end, we present the automated GDE (AutoGDE) testing system. Given a catalyst-coated GDE, AutoGDE automates the insertion of the GDE into an electrochemical cell, the liquid and gas handling, the quantification of gaseous reaction products <em>via</em> online mass spectroscopy, and the archiving of the liquid electrolyte for subsequent analysis.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/dd/d4dd00061g?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/dd/d4dd00061g","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The electrochemical conversion of carbon dioxide to chemicals and fuels is expected to be a key sustainability technology. Electrochemical carbon dioxide reduction technologies are challenged by several factors, including the limited solubility of carbon dioxide in aqueous electrolyte as well as the difficulty in utilizing polymer electrolytes. These considerations have driven system designs to incorporate gas diffusion electrodes (GDEs) to bring the electrocatalyst in contact with both a gaseous reactant/product stream as well as a liquid electrolyte. GDE optimization typically results from manual tuning by select experts. Automated preparation and operation of GDE cells could be a watershed for the systematic study of, and ultimately the development of a materials acceleration platform (MAP) for, catalyst discovery and system optimization. Toward this end, we present the automated GDE (AutoGDE) testing system. Given a catalyst-coated GDE, AutoGDE automates the insertion of the GDE into an electrochemical cell, the liquid and gas handling, the quantification of gaseous reaction products via online mass spectroscopy, and the archiving of the liquid electrolyte for subsequent analysis.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
加速筛选用于二氧化碳还原的气体扩散电极
电化学将二氧化碳转化为化学品和燃料有望成为一项关键的可持续发展技术。电化学二氧化碳还原技术面临着多种因素的挑战,包括二氧化碳在水性电解质中的溶解度有限以及难以使用聚合物电解质。这些因素促使系统设计采用气体扩散电极 (GDE),使电催化剂同时与气态反应物/产物流和液态电解质接触。气体扩散电极的优化通常是由选定的专家进行手动调整。GDE 单元的自动制备和操作可以成为系统研究的分水岭,并最终开发出用于催化剂发现和系统优化的材料加速平台 (MAP)。为此,我们推出了自动 GDE(AutoGDE)测试系统。给定一个催化剂涂层 GDE,AutoGDE 可自动将 GDE 插入电化学电池、处理液体和气体、通过在线质谱对气态反应产物进行定量,以及将液体电解质存档以备后续分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
期刊最新文献
Back cover Sorting polyolefins with near-infrared spectroscopy: identification of optimal data analysis pipelines and machine learning classifiers†‡ High accuracy uncertainty-aware interatomic force modeling with equivariant Bayesian neural networks† Correction: A smile is all you need: predicting limiting activity coefficients from SMILES with natural language processing Artificial intelligence-enabled optimization of battery-grade lithium carbonate production†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1