Introducing the use of a recyclable solid electrolyte for waste minimization in electrosynthesis: preparation of 2-aryl-benzoxazoles under flow conditions†

IF 9.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Green Chemistry Pub Date : 2024-06-04 DOI:10.1039/d4gc00930d
Francesco Ferlin , Federica Valentini , Filippo Campana , Luigi Vaccaro
{"title":"Introducing the use of a recyclable solid electrolyte for waste minimization in electrosynthesis: preparation of 2-aryl-benzoxazoles under flow conditions†","authors":"Francesco Ferlin ,&nbsp;Federica Valentini ,&nbsp;Filippo Campana ,&nbsp;Luigi Vaccaro","doi":"10.1039/d4gc00930d","DOIUrl":null,"url":null,"abstract":"<div><p>The necessary use of large amounts of a homogeneous electrolyte represents a major issue and challenge for the whole sustainability of electrosynthetic procedures. Herein, we report the use of a solid ammonium salt (<em>e.g.</em> Amberlyst-400-Cl, Amb-400-Cl) as a reusable electrolyte with excellent performance in the representative electrosynthesis of 2-arylbenzoxazoles. Amb-400-Cl works efficiently without adding any additional supporting electrolytes or mediators, and it can be reused without the need for a regeneration procedure. Exploiting this finding, a sustainable electro-promoted protocol has been developed under batch and flow conditions, which proves that the reported chemical and technological innovation leads to significant improvements compared to the literature processes. Extensive green metrics analysis has also been reported to fully quantify the advances in terms of sustainability.</p></div>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":null,"pages":null},"PeriodicalIF":9.3000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1463926224005181","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The necessary use of large amounts of a homogeneous electrolyte represents a major issue and challenge for the whole sustainability of electrosynthetic procedures. Herein, we report the use of a solid ammonium salt (e.g. Amberlyst-400-Cl, Amb-400-Cl) as a reusable electrolyte with excellent performance in the representative electrosynthesis of 2-arylbenzoxazoles. Amb-400-Cl works efficiently without adding any additional supporting electrolytes or mediators, and it can be reused without the need for a regeneration procedure. Exploiting this finding, a sustainable electro-promoted protocol has been developed under batch and flow conditions, which proves that the reported chemical and technological innovation leads to significant improvements compared to the literature processes. Extensive green metrics analysis has also been reported to fully quantify the advances in terms of sustainability.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在电合成中引入可回收固体电解质以减少废物:在流动条件下制备 2-芳基苯并噁唑
必须使用大量的均相电解质对整个电合成程序的可持续性是一个重大问题和挑战。在此,我们报告了使用固体铵盐(如 Amberlyst-400-Cl,Amb-400-Cl)作为可重复使用的电解质,在 2-芳基苯并恶唑的代表性电合成中表现出色。Amb-400-Cl 不需要添加任何额外的辅助电解质或介质就能高效工作,而且无需再生程序即可重复使用。利用这一发现,我们在间歇和流动条件下开发出了一种可持续的电促进方案,证明与文献中的工艺相比,所报道的化学和技术创新带来了显著的改进。报告还进行了广泛的绿色指标分析,以全面量化在可持续发展方面取得的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Green Chemistry
Green Chemistry 化学-化学综合
CiteScore
16.10
自引率
7.10%
发文量
677
审稿时长
1.4 months
期刊介绍: Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.
期刊最新文献
Correction: Sustainable electrochemical synthesis of dry formaldehyde from anhydrous methanol Rational bottom-up synthesis of sulphur-rich porous carbons for single-atomic platinum catalyst supports Balancing computational chemistry's potential with its environmental impact Correction: Metal-free visible-light-induced phosphorylation of unactivated alkyl iodides with white phosphorus as the P-atom source Low-chromophore lignin isolation from natural biomass with polyol-based deep eutectic solvents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1