Command filter based input quantized adaptive tracking control for multi-input and multi-output non-strict feedback systems with unmodeled dynamics and full state time-varying constraints
{"title":"Command filter based input quantized adaptive tracking control for multi-input and multi-output non-strict feedback systems with unmodeled dynamics and full state time-varying constraints","authors":"Xinfeng Zhu, Jinyu Li","doi":"10.1002/acs.3828","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This paper addresses the problem of adaptive tracking control for multi-input and multi-output (MIMO) non-strict feedback systems with unmodeled dynamics and full state time-varying constraints. To tackle the interference of unmodeled dynamics, the dynamic signal generated by the auxiliary system is used. Hyperbolic tangent function is used as a nonlinear mapping tool to transform the constrained system into an unconstrained one. Hysteresis quantizer is introduced to mitigate the chattering phenomenon and quantization error in the quantization signal. The derivative of virtual signal can be approximated more efficiently by command filter. Furthermore, an error compensation mechanism is established to mitigate the error introduced by the command filter. Unknown nonlinear functions are approximated by radial basis function neural networks (RBFNNs). Stability analysis of the proposed controller is performed through the Lyapunov stability theory and the output tracking error can be constrained within a specified range. Finally, simulation results are presented to demonstrate the effectiveness of the proposed method.</p>\n </div>","PeriodicalId":50347,"journal":{"name":"International Journal of Adaptive Control and Signal Processing","volume":"38 8","pages":"2731-2749"},"PeriodicalIF":3.9000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Adaptive Control and Signal Processing","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/acs.3828","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper addresses the problem of adaptive tracking control for multi-input and multi-output (MIMO) non-strict feedback systems with unmodeled dynamics and full state time-varying constraints. To tackle the interference of unmodeled dynamics, the dynamic signal generated by the auxiliary system is used. Hyperbolic tangent function is used as a nonlinear mapping tool to transform the constrained system into an unconstrained one. Hysteresis quantizer is introduced to mitigate the chattering phenomenon and quantization error in the quantization signal. The derivative of virtual signal can be approximated more efficiently by command filter. Furthermore, an error compensation mechanism is established to mitigate the error introduced by the command filter. Unknown nonlinear functions are approximated by radial basis function neural networks (RBFNNs). Stability analysis of the proposed controller is performed through the Lyapunov stability theory and the output tracking error can be constrained within a specified range. Finally, simulation results are presented to demonstrate the effectiveness of the proposed method.
期刊介绍:
The International Journal of Adaptive Control and Signal Processing is concerned with the design, synthesis and application of estimators or controllers where adaptive features are needed to cope with uncertainties.Papers on signal processing should also have some relevance to adaptive systems. The journal focus is on model based control design approaches rather than heuristic or rule based control design methods. All papers will be expected to include significant novel material.
Both the theory and application of adaptive systems and system identification are areas of interest. Papers on applications can include problems in the implementation of algorithms for real time signal processing and control. The stability, convergence, robustness and numerical aspects of adaptive algorithms are also suitable topics. The related subjects of controller tuning, filtering, networks and switching theory are also of interest. Principal areas to be addressed include:
Auto-Tuning, Self-Tuning and Model Reference Adaptive Controllers
Nonlinear, Robust and Intelligent Adaptive Controllers
Linear and Nonlinear Multivariable System Identification and Estimation
Identification of Linear Parameter Varying, Distributed and Hybrid Systems
Multiple Model Adaptive Control
Adaptive Signal processing Theory and Algorithms
Adaptation in Multi-Agent Systems
Condition Monitoring Systems
Fault Detection and Isolation Methods
Fault Detection and Isolation Methods
Fault-Tolerant Control (system supervision and diagnosis)
Learning Systems and Adaptive Modelling
Real Time Algorithms for Adaptive Signal Processing and Control
Adaptive Signal Processing and Control Applications
Adaptive Cloud Architectures and Networking
Adaptive Mechanisms for Internet of Things
Adaptive Sliding Mode Control.