{"title":"Artificial neural network-based adaptive control for nonlinear dynamical systems","authors":"Kartik Saini, Narendra Kumar, Bharat Bhushan, Rajesh Kumar","doi":"10.1002/acs.3823","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This research article presents an artificial neural network (ANN)-based indirect adaptive control method for nonlinear dynamical systems. In this article, a modified Elman recurrent neural network (MERNN) is proposed as an identifier and controller for controlling nonlinear systems. The architecture of the proposed controller is a modified form of the existing Elman recurrent neural network. The parameter training of ANN-based controllers is obtained by using the most popular optimization algorithm which is known as the back-propagation algorithm. A comparative study includes Elman, Diagonal, Jordan, feed-forward neural network (FFNN), and radial basis function network (RBFN)-based controllers to compare with the proposed MERNN controller. To determine the controller's robustness, parameter variations, and disturbance signals have been considered. The performance analysis of the proposed controller is illustrated by two simulation examples. The simulation results reveal that MERNN can not only identify the unknown dynamics of the plant but also adaptively control it compared to the others.</p>\n </div>","PeriodicalId":50347,"journal":{"name":"International Journal of Adaptive Control and Signal Processing","volume":"38 8","pages":"2693-2715"},"PeriodicalIF":3.9000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Adaptive Control and Signal Processing","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/acs.3823","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This research article presents an artificial neural network (ANN)-based indirect adaptive control method for nonlinear dynamical systems. In this article, a modified Elman recurrent neural network (MERNN) is proposed as an identifier and controller for controlling nonlinear systems. The architecture of the proposed controller is a modified form of the existing Elman recurrent neural network. The parameter training of ANN-based controllers is obtained by using the most popular optimization algorithm which is known as the back-propagation algorithm. A comparative study includes Elman, Diagonal, Jordan, feed-forward neural network (FFNN), and radial basis function network (RBFN)-based controllers to compare with the proposed MERNN controller. To determine the controller's robustness, parameter variations, and disturbance signals have been considered. The performance analysis of the proposed controller is illustrated by two simulation examples. The simulation results reveal that MERNN can not only identify the unknown dynamics of the plant but also adaptively control it compared to the others.
期刊介绍:
The International Journal of Adaptive Control and Signal Processing is concerned with the design, synthesis and application of estimators or controllers where adaptive features are needed to cope with uncertainties.Papers on signal processing should also have some relevance to adaptive systems. The journal focus is on model based control design approaches rather than heuristic or rule based control design methods. All papers will be expected to include significant novel material.
Both the theory and application of adaptive systems and system identification are areas of interest. Papers on applications can include problems in the implementation of algorithms for real time signal processing and control. The stability, convergence, robustness and numerical aspects of adaptive algorithms are also suitable topics. The related subjects of controller tuning, filtering, networks and switching theory are also of interest. Principal areas to be addressed include:
Auto-Tuning, Self-Tuning and Model Reference Adaptive Controllers
Nonlinear, Robust and Intelligent Adaptive Controllers
Linear and Nonlinear Multivariable System Identification and Estimation
Identification of Linear Parameter Varying, Distributed and Hybrid Systems
Multiple Model Adaptive Control
Adaptive Signal processing Theory and Algorithms
Adaptation in Multi-Agent Systems
Condition Monitoring Systems
Fault Detection and Isolation Methods
Fault Detection and Isolation Methods
Fault-Tolerant Control (system supervision and diagnosis)
Learning Systems and Adaptive Modelling
Real Time Algorithms for Adaptive Signal Processing and Control
Adaptive Signal Processing and Control Applications
Adaptive Cloud Architectures and Networking
Adaptive Mechanisms for Internet of Things
Adaptive Sliding Mode Control.