{"title":"Adaptive dynamic programming and distributionally robust optimal control of linear stochastic system using the Wasserstein metric","authors":"Qingpeng Liang, Jiangping Hu, Linying Xiang, Kaibo Shi, Yanzhi Wu","doi":"10.1002/acs.3830","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this paper, we consider the optimal control of unknown stochastic dynamical system for both the finite-horizon and infinite-horizon cases. The objective of this paper is to find an optimal controller to minimize the expected value of a function which depends on the random disturbance. Throughout this paper, it is assumed that the mean vector and covariance matrix of the disturbance distribution is unknown. An uncertainty set in the space of mean vector and the covariance matrix is introduced. For the finite-horizon case, we derive a closed-form expression of the unique optimal policy and the opponents policy that generates the worst-case distribution. For the infinite-horizon case, we simplify the Riccati equation obtained in the finite-hozion setting to an algebraic Riccati equation, which can guarantee the existence of the solution of the Riccati equation. It is shown that the resulting optimal policies obtained in these two cases can stabilize the expected value of the system state under the worst-case distribution. Furthermore, the unknown system matrices can also be explicitly computed using the adaptive dynamic programming technique, which can help compute the optimal control policy by solving the algebraic Riccati equation. Finally, a simulation example is presented to demonstrate the effectiveness of our theoretical results.</p>\n </div>","PeriodicalId":50347,"journal":{"name":"International Journal of Adaptive Control and Signal Processing","volume":"38 8","pages":"2810-2832"},"PeriodicalIF":3.9000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Adaptive Control and Signal Processing","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/acs.3830","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we consider the optimal control of unknown stochastic dynamical system for both the finite-horizon and infinite-horizon cases. The objective of this paper is to find an optimal controller to minimize the expected value of a function which depends on the random disturbance. Throughout this paper, it is assumed that the mean vector and covariance matrix of the disturbance distribution is unknown. An uncertainty set in the space of mean vector and the covariance matrix is introduced. For the finite-horizon case, we derive a closed-form expression of the unique optimal policy and the opponents policy that generates the worst-case distribution. For the infinite-horizon case, we simplify the Riccati equation obtained in the finite-hozion setting to an algebraic Riccati equation, which can guarantee the existence of the solution of the Riccati equation. It is shown that the resulting optimal policies obtained in these two cases can stabilize the expected value of the system state under the worst-case distribution. Furthermore, the unknown system matrices can also be explicitly computed using the adaptive dynamic programming technique, which can help compute the optimal control policy by solving the algebraic Riccati equation. Finally, a simulation example is presented to demonstrate the effectiveness of our theoretical results.
期刊介绍:
The International Journal of Adaptive Control and Signal Processing is concerned with the design, synthesis and application of estimators or controllers where adaptive features are needed to cope with uncertainties.Papers on signal processing should also have some relevance to adaptive systems. The journal focus is on model based control design approaches rather than heuristic or rule based control design methods. All papers will be expected to include significant novel material.
Both the theory and application of adaptive systems and system identification are areas of interest. Papers on applications can include problems in the implementation of algorithms for real time signal processing and control. The stability, convergence, robustness and numerical aspects of adaptive algorithms are also suitable topics. The related subjects of controller tuning, filtering, networks and switching theory are also of interest. Principal areas to be addressed include:
Auto-Tuning, Self-Tuning and Model Reference Adaptive Controllers
Nonlinear, Robust and Intelligent Adaptive Controllers
Linear and Nonlinear Multivariable System Identification and Estimation
Identification of Linear Parameter Varying, Distributed and Hybrid Systems
Multiple Model Adaptive Control
Adaptive Signal processing Theory and Algorithms
Adaptation in Multi-Agent Systems
Condition Monitoring Systems
Fault Detection and Isolation Methods
Fault Detection and Isolation Methods
Fault-Tolerant Control (system supervision and diagnosis)
Learning Systems and Adaptive Modelling
Real Time Algorithms for Adaptive Signal Processing and Control
Adaptive Signal Processing and Control Applications
Adaptive Cloud Architectures and Networking
Adaptive Mechanisms for Internet of Things
Adaptive Sliding Mode Control.