Hyun-ju Lee, JinHan Nam, Jeong-Woo Hwang, Jin-Hee Park, Yoo Joo Jeong, Ji-Yeong Jang, Su-Jeong Kim, A-Ran Jo, Hyang-Sook Hoe
{"title":"L-DOPA regulates neuroinflammation and Aβ pathology through NEP and ADAM17 in a mouse model of AD","authors":"Hyun-ju Lee, JinHan Nam, Jeong-Woo Hwang, Jin-Hee Park, Yoo Joo Jeong, Ji-Yeong Jang, Su-Jeong Kim, A-Ran Jo, Hyang-Sook Hoe","doi":"10.1186/s13041-024-01092-8","DOIUrl":null,"url":null,"abstract":"Dopamine plays important roles in cognitive function and inflammation and therefore is involved in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease (AD). Drugs that increase or maintain dopamine levels in the brain could be a therapeutic strategy for AD. However, the effects of dopamine and its precursor levodopa (L-DOPA) on Aβ/tau pathology in vivo and the underlying molecular mechanisms have not been studied in detail. Here, we investigated whether L-DOPA treatment alters neuroinflammation, Aβ pathology, and tau phosphorylation in 5xFAD mice, a model of AD. We found that L-DOPA administration significantly reduced microgliosis and astrogliosis in 5xFAD mice. In addition, L-DOPA treatment significantly decreased Aβ plaque number by upregulating NEP and ADAM17 levels in 5xFAD mice. However, L-DOPA-treated 5xFAD mice did not exhibit changes in tau hyperphosphorylation or tau kinase levels. These data suggest that L-DOPA alleviates neuroinflammatory responses and Aβ pathology but not tau pathology in this mouse model of AD.","PeriodicalId":18851,"journal":{"name":"Molecular Brain","volume":"23 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Brain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13041-024-01092-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Dopamine plays important roles in cognitive function and inflammation and therefore is involved in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease (AD). Drugs that increase or maintain dopamine levels in the brain could be a therapeutic strategy for AD. However, the effects of dopamine and its precursor levodopa (L-DOPA) on Aβ/tau pathology in vivo and the underlying molecular mechanisms have not been studied in detail. Here, we investigated whether L-DOPA treatment alters neuroinflammation, Aβ pathology, and tau phosphorylation in 5xFAD mice, a model of AD. We found that L-DOPA administration significantly reduced microgliosis and astrogliosis in 5xFAD mice. In addition, L-DOPA treatment significantly decreased Aβ plaque number by upregulating NEP and ADAM17 levels in 5xFAD mice. However, L-DOPA-treated 5xFAD mice did not exhibit changes in tau hyperphosphorylation or tau kinase levels. These data suggest that L-DOPA alleviates neuroinflammatory responses and Aβ pathology but not tau pathology in this mouse model of AD.
期刊介绍:
Molecular Brain is an open access, peer-reviewed journal that considers manuscripts on all aspects of studies on the nervous system at the molecular, cellular, and systems level providing a forum for scientists to communicate their findings.
Molecular brain research is a rapidly expanding research field in which integrative approaches at the genetic, molecular, cellular and synaptic levels yield key information about the physiological and pathological brain. These studies involve the use of a wide range of modern techniques in molecular biology, genomics, proteomics, imaging and electrophysiology.