D A Kaltsas, A Kuiroukidis, P J Morrison and G N Throumoulopoulos
{"title":"Axisymmetric hybrid Vlasov equilibria with applications to tokamak plasmas","authors":"D A Kaltsas, A Kuiroukidis, P J Morrison and G N Throumoulopoulos","doi":"10.1088/1361-6587/ad4174","DOIUrl":null,"url":null,"abstract":"We derive axisymmetric equilibrium equations in the context of the hybrid Vlasov model with kinetic ions and massless fluid electrons, assuming isothermal electrons and deformed Maxwellian distribution functions for the kinetic ions. The equilibrium system comprises a Grad–Shafranov partial differential equation and an integral equation. These equations can be utilized to calculate the equilibrium magnetic field and ion distribution function, respectively, for given particle density or given ion and electron toroidal current density profiles. The resulting solutions describe states characterized by toroidal plasma rotation and toroidal electric current density. Additionally, due to the presence of fluid electrons, these equilibria also exhibit a poloidal current density component. This is in contrast to the fully kinetic Vlasov model, where axisymmetric Jeans equilibria can only accommodate toroidal currents and flows, given the absence of a third integral of the microscopic motion.","PeriodicalId":20239,"journal":{"name":"Plasma Physics and Controlled Fusion","volume":"46 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Physics and Controlled Fusion","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6587/ad4174","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
We derive axisymmetric equilibrium equations in the context of the hybrid Vlasov model with kinetic ions and massless fluid electrons, assuming isothermal electrons and deformed Maxwellian distribution functions for the kinetic ions. The equilibrium system comprises a Grad–Shafranov partial differential equation and an integral equation. These equations can be utilized to calculate the equilibrium magnetic field and ion distribution function, respectively, for given particle density or given ion and electron toroidal current density profiles. The resulting solutions describe states characterized by toroidal plasma rotation and toroidal electric current density. Additionally, due to the presence of fluid electrons, these equilibria also exhibit a poloidal current density component. This is in contrast to the fully kinetic Vlasov model, where axisymmetric Jeans equilibria can only accommodate toroidal currents and flows, given the absence of a third integral of the microscopic motion.
期刊介绍:
Plasma Physics and Controlled Fusion covers all aspects of the physics of hot, highly ionised plasmas. This includes results of current experimental and theoretical research on all aspects of the physics of high-temperature plasmas and of controlled nuclear fusion, including the basic phenomena in highly-ionised gases in the laboratory, in the ionosphere and in space, in magnetic-confinement and inertial-confinement fusion as well as related diagnostic methods.
Papers with a technological emphasis, for example in such topics as plasma control, fusion technology and diagnostics, are welcomed when the plasma physics is an integral part of the paper or when the technology is unique to plasma applications or new to the field of plasma physics. Papers on dusty plasma physics are welcome when there is a clear relevance to fusion.