Hellinger Distance Estimation for Nonregular Spectra

IF 0.5 4区 数学 Q4 STATISTICS & PROBABILITY Theory of Probability and its Applications Pub Date : 2024-05-02 DOI:10.1137/s0040585x97t991805
M. Taniguchi, Y. Xue
{"title":"Hellinger Distance Estimation for Nonregular Spectra","authors":"M. Taniguchi, Y. Xue","doi":"10.1137/s0040585x97t991805","DOIUrl":null,"url":null,"abstract":"Theory of Probability &amp;Its Applications, Volume 69, Issue 1, Page 150-160, May 2024. <br/> For Gaussian stationary processes, a time series Hellinger distance $T(f,g)$ for spectra $f$ and $g$ is derived. Evaluating $T(f_\\theta,f_{\\theta+h})$ of the form $O(h^\\alpha)$, we give $1/\\alpha$-consistent asymptotics of the maximum likelihood estimator of $\\theta$ for nonregular spectra. For regular spectra, we introduce the minimum Hellinger distance estimator $\\widehat{\\theta}=\\operatorname{arg}\\min_\\theta T(f_\\theta,\\widehat{g}_n)$, where $\\widehat{g}_n$ is a nonparametric spectral density estimator. We show that $\\widehat\\theta$ is asymptotically efficient and more robust than the Whittle estimator. Brief numerical studies are provided.","PeriodicalId":51193,"journal":{"name":"Theory of Probability and its Applications","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Probability and its Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/s0040585x97t991805","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Theory of Probability &Its Applications, Volume 69, Issue 1, Page 150-160, May 2024.
For Gaussian stationary processes, a time series Hellinger distance $T(f,g)$ for spectra $f$ and $g$ is derived. Evaluating $T(f_\theta,f_{\theta+h})$ of the form $O(h^\alpha)$, we give $1/\alpha$-consistent asymptotics of the maximum likelihood estimator of $\theta$ for nonregular spectra. For regular spectra, we introduce the minimum Hellinger distance estimator $\widehat{\theta}=\operatorname{arg}\min_\theta T(f_\theta,\widehat{g}_n)$, where $\widehat{g}_n$ is a nonparametric spectral density estimator. We show that $\widehat\theta$ is asymptotically efficient and more robust than the Whittle estimator. Brief numerical studies are provided.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非规则频谱的海灵格距离估计
概率论及其应用》(Theory of Probability &Its Applications),第 69 卷第 1 期,第 150-160 页,2024 年 5 月。 对于高斯静止过程,推导出了频谱 $f$ 和 $g$ 的时间序列海灵格距离 $T(f,g)$。计算 $T(f_\theta,f_{\theta+h})$ 的形式为 $O(h^\alpha)$,我们给出了非规则谱的 $\theta$ 最大似然估计值的 1/\alpha$ 一致性渐近。对于规则谱,我们引入了最小海灵格距离估计器 $\widehat{theta}=\operatorname{arg}\min_\theta T(f_\theta,\widehat{g}_n)$ ,其中 $\widehat{g}_n$ 是一个非参数谱密度估计器。我们证明,$\widehat\theta$ 在渐近上是有效的,而且比惠特尔估计器更稳健。我们还提供了简要的数值研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Theory of Probability and its Applications
Theory of Probability and its Applications 数学-统计学与概率论
CiteScore
1.00
自引率
16.70%
发文量
54
审稿时长
6 months
期刊介绍: Theory of Probability and Its Applications (TVP) accepts original articles and communications on the theory of probability, general problems of mathematical statistics, and applications of the theory of probability to natural science and technology. Articles of the latter type will be accepted only if the mathematical methods applied are essentially new.
期刊最新文献
Poisson Process with Linear Drift and Related Function Series In Memory of A. M. Vershik (12.28.1933--02.14.2024) Two-sided Estimates for the Sum of Probabilities of Errors in the Multiple Hypothesis Testing Problem with Finite Number of Hypotheses on a Nonhomogeneous Sample On an Example of Expectation Evaluation High Excursion Probabilities for Gaussian Fields on Smooth Manifolds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1