Enabling near-real-time safety glove detection through edge computing and transfer learning: comparative analysis of edge and cloud computing-based methods
Mikias Gugssa, Long Li, Lina Pu, Ali Gurbuz, Yu Luo, Jun Wang
{"title":"Enabling near-real-time safety glove detection through edge computing and transfer learning: comparative analysis of edge and cloud computing-based methods","authors":"Mikias Gugssa, Long Li, Lina Pu, Ali Gurbuz, Yu Luo, Jun Wang","doi":"10.1108/ecam-07-2023-0763","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>Computer vision and deep learning (DL) methods have been investigated for personal protective equipment (PPE) monitoring and detection for construction workers’ safety. However, it is still challenging to implement automated safety monitoring methods in near real time or in a time-efficient manner in real construction practices. Therefore, this study developed a novel solution to enhance the time efficiency to achieve near-real-time safety glove detection and meanwhile preserve data privacy.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>The developed method comprises two primary components: (1) transfer learning methods to detect safety gloves and (2) edge computing to improve time efficiency and data privacy. To compare the developed edge computing-based method with the currently widely used cloud computing-based methods, a comprehensive comparative analysis was conducted from both the implementation and theory perspectives, providing insights into the developed approach’s performance.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>Three DL models achieved mean average precision (mAP) scores ranging from 74.92% to 84.31% for safety glove detection. The other two methods by combining object detection and classification achieved mAP as 89.91% for hand detection and 100% for glove classification. From both implementation and theory perspectives, the edge computing-based method detected gloves faster than the cloud computing-based method. The edge computing-based method achieved a detection latency of 36%–68% shorter than the cloud computing-based method in the implementation perspective. The findings highlight edge computing’s potential for near-real-time detection with improved data privacy.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>This study implemented and evaluated DL-based safety monitoring methods on different computing infrastructures to investigate their time efficiency. This study contributes to existing knowledge by demonstrating how edge computing can be used with DL models (without sacrificing their performance) to improve PPE-glove monitoring in a time-efficient manner as well as maintain data privacy.</p><!--/ Abstract__block -->","PeriodicalId":11888,"journal":{"name":"Engineering, Construction and Architectural Management","volume":"11 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering, Construction and Architectural Management","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/ecam-07-2023-0763","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
Computer vision and deep learning (DL) methods have been investigated for personal protective equipment (PPE) monitoring and detection for construction workers’ safety. However, it is still challenging to implement automated safety monitoring methods in near real time or in a time-efficient manner in real construction practices. Therefore, this study developed a novel solution to enhance the time efficiency to achieve near-real-time safety glove detection and meanwhile preserve data privacy.
Design/methodology/approach
The developed method comprises two primary components: (1) transfer learning methods to detect safety gloves and (2) edge computing to improve time efficiency and data privacy. To compare the developed edge computing-based method with the currently widely used cloud computing-based methods, a comprehensive comparative analysis was conducted from both the implementation and theory perspectives, providing insights into the developed approach’s performance.
Findings
Three DL models achieved mean average precision (mAP) scores ranging from 74.92% to 84.31% for safety glove detection. The other two methods by combining object detection and classification achieved mAP as 89.91% for hand detection and 100% for glove classification. From both implementation and theory perspectives, the edge computing-based method detected gloves faster than the cloud computing-based method. The edge computing-based method achieved a detection latency of 36%–68% shorter than the cloud computing-based method in the implementation perspective. The findings highlight edge computing’s potential for near-real-time detection with improved data privacy.
Originality/value
This study implemented and evaluated DL-based safety monitoring methods on different computing infrastructures to investigate their time efficiency. This study contributes to existing knowledge by demonstrating how edge computing can be used with DL models (without sacrificing their performance) to improve PPE-glove monitoring in a time-efficient manner as well as maintain data privacy.
期刊介绍:
ECAM publishes original peer-reviewed research papers, case studies, technical notes, book reviews, features, discussions and other contemporary articles that advance research and practice in engineering, construction and architectural management. In particular, ECAM seeks to advance integrated design and construction practices, project lifecycle management, and sustainable construction. The journal’s scope covers all aspects of architectural design, design management, construction/project management, engineering management of major infrastructure projects, and the operation and management of constructed facilities. ECAM also addresses the technological, process, economic/business, environmental/sustainability, political, and social/human developments that influence the construction project delivery process.
ECAM strives to establish strong theoretical and empirical debates in the above areas of engineering, architecture, and construction research. Papers should be heavily integrated with the existing and current body of knowledge within the field and develop explicit and novel contributions. Acknowledging the global character of the field, we welcome papers on regional studies but encourage authors to position the work within the broader international context by reviewing and comparing findings from their regional study with studies conducted in other regions or countries whenever possible.