{"title":"Existence of ground states to quasi-linear Schrödinger equations with critical exponential growth involving different potentials","authors":"Caifeng Zhang, Maochun Zhu","doi":"10.1515/ans-2023-0136","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is three-fold. First, we establish singular Trudinger–Moser inequalities with less restrictive constraint:<jats:disp-formula> <jats:label>(0.1)</jats:label> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\" overflow=\"scroll\"> <m:munder> <m:mrow> <m:mi>sup</m:mi> </m:mrow> <m:mrow> <m:mi>u</m:mi> <m:mo>∈</m:mo> <m:msup> <m:mrow> <m:mi>H</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:munder> <m:mrow> <m:mo>∫</m:mo> </m:mrow> <m:mrow> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:mrow> </m:munder> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mi>∇</m:mi> <m:mi>u</m:mi> <m:msup> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mo>+</m:mo> <m:mi>V</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:msup> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mi mathvariant=\"normal\">d</m:mi> <m:mi>x</m:mi> <m:mo>≤</m:mo> <m:mn>1</m:mn> </m:mrow> </m:munder> <m:munder> <m:mrow> <m:mo>∫</m:mo> </m:mrow> <m:mrow> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:mrow> </m:munder> <m:mfrac> <m:mrow> <m:msup> <m:mrow> <m:mi>e</m:mi> </m:mrow> <m:mrow> <m:mn>4</m:mn> <m:mi>π</m:mi> <m:mfenced close=\")\" open=\"(\"> <m:mrow> <m:mn>1</m:mn> <m:mo>−</m:mo> <m:mfrac> <m:mrow> <m:mi>β</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:mfrac> </m:mrow> </m:mfenced> <m:msup> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:mrow> </m:msup> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mi>x</m:mi> <m:msup> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mrow> <m:mi>β</m:mi> </m:mrow> </m:msup> </m:mrow> </m:mfrac> <m:mi mathvariant=\"normal\">d</m:mi> <m:mi>x</m:mi> <m:mo><</m:mo> <m:mo>+</m:mo> <m:mi>∞</m:mi> <m:mo>,</m:mo> </m:math> <jats:tex-math> $$\\underset{u\\in {H}^{1}({\\mathbb{R}}^{2}),\\underset{{\\mathbb{R}}^{2}}{\\int }(\\vert \\nabla u{\\vert }^{2}+V(x){u}^{2})\\mathrm{d}x\\le 1}{\\mathrm{sup}}\\underset{{\\mathbb{R}}^{2}}{\\int }\\frac{{e}^{4\\pi \\left(1-\\tfrac{\\beta }{2}\\right){u}^{2}}-1}{\\vert x{\\vert }^{\\beta }}\\mathrm{d}x< +\\infty ,$$ </jats:tex-math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0136_eq_001.png\"/> </jats:alternatives> </jats:disp-formula>where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mn>0</m:mn> <m:mo><</m:mo> <m:mi>β</m:mi> <m:mo><</m:mo> <m:mn>2</m:mn> </m:math> <jats:tex-math> $0< \\beta < 2$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0136_ineq_001.png\"/> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mi>V</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>≥</m:mo> <m:mn>0</m:mn> </m:math> <jats:tex-math> $V(x)\\ge 0$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0136_ineq_002.png\"/> </jats:alternatives> </jats:inline-formula> and may vanish on an open set in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:math> <jats:tex-math> ${\\mathbb{R}}^{2}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0136_ineq_003.png\"/> </jats:alternatives> </jats:inline-formula>. Second, we consider the existence of ground states to the following Schrödinger equations with critical exponential growth in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:math> <jats:tex-math> ${\\mathbb{R}}^{2}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0136_ineq_004.png\"/> </jats:alternatives> </jats:inline-formula>:<jats:disp-formula> <jats:label>(0.2)</jats:label> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\" overflow=\"scroll\"> <m:mo>−</m:mo> <m:mi mathvariant=\"normal\">Δ</m:mi> <m:mi>u</m:mi> <m:mo>+</m:mo> <m:mi>γ</m:mi> <m:mi>u</m:mi> <m:mo>=</m:mo> <m:mfrac> <m:mrow> <m:mi>f</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mi>x</m:mi> <m:msup> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mrow> <m:mi>β</m:mi> </m:mrow> </m:msup> </m:mrow> </m:mfrac> <m:mo>,</m:mo> </m:math> <jats:tex-math> $${-}{\\Delta }u+\\gamma u=\\frac{f(u)}{\\vert x{\\vert }^{\\beta }},$$ </jats:tex-math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0136_eq_002.png\"/> </jats:alternatives> </jats:disp-formula>where the nonlinearity <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mi>f</m:mi> </m:math> <jats:tex-math> $f$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0136_ineq_005.png\"/> </jats:alternatives> </jats:inline-formula> has the critical exponential growth. In order to overcome the lack of compactness, we develop a method which is based on the threshold of the least energy, an embedding theorem introduced in (C. Zhang and L. Chen, “Concentration-compactness principle of singular Trudinger-Moser inequalities in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msup> </m:math> <jats:tex-math> ${\\mathbb{R}}^{n}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0136_ineq_006.png\"/> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mi>n</m:mi> </m:math> <jats:tex-math> $n$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0136_ineq_007.png\"/> </jats:alternatives> </jats:inline-formula>-Laplace equations,” <jats:italic>Adv. Nonlinear Stud.</jats:italic>, vol. 18, no. 3, pp. 567–585, 2018) and the Nehari manifold to get the existence of ground states. Furthermore, as an application of inequality (0.1), we also prove the existence of ground states to the following equations involving degenerate potentials in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:math> <jats:tex-math> ${\\mathbb{R}}^{2}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0136_ineq_008.png\"/> </jats:alternatives> </jats:inline-formula>:<jats:disp-formula> <jats:label>(0.3)</jats:label> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\" overflow=\"scroll\"> <m:mo>−</m:mo> <m:mi mathvariant=\"normal\">Δ</m:mi> <m:mi>u</m:mi> <m:mo>+</m:mo> <m:mi>V</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mi>u</m:mi> <m:mo>=</m:mo> <m:mfrac> <m:mrow> <m:mi>f</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mi>x</m:mi> <m:msup> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mrow> <m:mi>β</m:mi> </m:mrow> </m:msup> </m:mrow> </m:mfrac> <m:mo>.</m:mo> </m:math> <jats:tex-math> $${-}{\\Delta }u+V(x)u=\\frac{f(u)}{\\vert x{\\vert }^{\\beta }}.$$ </jats:tex-math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0136_eq_003.png\"/> </jats:alternatives> </jats:disp-formula>","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"16 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nonlinear Studies","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ans-2023-0136","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The purpose of this paper is three-fold. First, we establish singular Trudinger–Moser inequalities with less restrictive constraint:(0.1)supu∈H1(R2),∫R2(|∇u|2+V(x)u2)dx≤1∫R2e4π1−β2u2−1|x|βdx<+∞, $$\underset{u\in {H}^{1}({\mathbb{R}}^{2}),\underset{{\mathbb{R}}^{2}}{\int }(\vert \nabla u{\vert }^{2}+V(x){u}^{2})\mathrm{d}x\le 1}{\mathrm{sup}}\underset{{\mathbb{R}}^{2}}{\int }\frac{{e}^{4\pi \left(1-\tfrac{\beta }{2}\right){u}^{2}}-1}{\vert x{\vert }^{\beta }}\mathrm{d}x< +\infty ,$$ where 0<β<2 $0< \beta < 2$ , V(x)≥0 $V(x)\ge 0$ and may vanish on an open set in R2 ${\mathbb{R}}^{2}$ . Second, we consider the existence of ground states to the following Schrödinger equations with critical exponential growth in R2 ${\mathbb{R}}^{2}$ :(0.2)−Δu+γu=f(u)|x|β, $${-}{\Delta }u+\gamma u=\frac{f(u)}{\vert x{\vert }^{\beta }},$$ where the nonlinearity f $f$ has the critical exponential growth. In order to overcome the lack of compactness, we develop a method which is based on the threshold of the least energy, an embedding theorem introduced in (C. Zhang and L. Chen, “Concentration-compactness principle of singular Trudinger-Moser inequalities in Rn ${\mathbb{R}}^{n}$ and n $n$ -Laplace equations,” Adv. Nonlinear Stud., vol. 18, no. 3, pp. 567–585, 2018) and the Nehari manifold to get the existence of ground states. Furthermore, as an application of inequality (0.1), we also prove the existence of ground states to the following equations involving degenerate potentials in R2 ${\mathbb{R}}^{2}$ :(0.3)−Δu+V(x)u=f(u)|x|β. $${-}{\Delta }u+V(x)u=\frac{f(u)}{\vert x{\vert }^{\beta }}.$$
本文的目的有三个方面。首先,我们建立了限制较少的奇异特鲁丁格-莫泽不等式: (0.1) sup u ∈ H 1 ( R 2 ) , ∫ R 2 ( |∇ u | 2 + V ( x ) u 2 ) d x ≤ 1 ∫ R 2 e 4 π 1 - β 2 u 2 - 1 | x | β d x <;+ ∞ , $$\underset{u\in {H}^{1}({\mathbb{R}}^{2})、\underset{{mathbb{R}}^{2}}{int }(\vert \nabla u{vert }^{2}+V(x){u}^{2})\mathrm{d}x\le 1}\{mathrm{sup}}\underset{{\mathbb{R}}^{2}}{int }\frac{e}^{4\pi \left(1-).\tfrac{beta }{2}\right){u}^{2}}-1}{vert x{vert }^{\beta }}\mathrm{d}x<;+\infty ,$$ 其中 0 < β < 2 $0< \beta < 2$ , V ( x ) ≥ 0 $V(x)\ge 0$ 并且可能在 R 2 ${\mathbb{R}}^{2}$ 中的开集上消失。其次,我们考虑在 R 2 ${\mathbb{R}}^{2}$ 中存在以下具有临界指数增长的薛定谔方程的基态: (0.2) - Δ u + γ u = f ( u ) | x | β , $${-}{\Delta }u+\gamma u=\frac{f(u)}{\vert x{\vert }^{\beta }},$$其中非线性 f $f$ 具有临界指数增长。为了克服紧凑性的不足,我们开发了一种基于最小能量阈值的方法,该方法是嵌入定理(C. Zhang and L. Chen, "Concentration-compactness principle of singular Trudinger-Moser inequalities in R n ${\mathbb{R}}^{n}$ and n $n$ -Laplace equations," Adv. Nonlinear Stud.3, pp. 567-585, 2018)和 Nehari 流形,从而得到基态的存在。此外,作为不等式(0.1)的应用,我们还证明了涉及 R 2 ${\mathbb{R}}^{2}$ 中退化势的下列方程的基态存在性: (0.3) - Δ u + V ( x ) u = f ( u ) | x | β . $${-}{\Delta }u+V(x)u=\frac{f(u)}{\vert x\vert }^{\beta }}.$$$
期刊介绍:
Advanced Nonlinear Studies is aimed at publishing papers on nonlinear problems, particulalry those involving Differential Equations, Dynamical Systems, and related areas. It will also publish novel and interesting applications of these areas to problems in engineering and the sciences. Papers submitted to this journal must contain original, timely, and significant results. Articles will generally, but not always, be published in the order when the final copies were received.