Local Similarity Theory as the Invariant Solution of the Governing Equations

IF 2.3 3区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Boundary-Layer Meteorology Pub Date : 2024-04-30 DOI:10.1007/s10546-024-00867-9
Marta Wacławczyk, Jun-Ichi Yano, Grzegorz M. Florczyk
{"title":"Local Similarity Theory as the Invariant Solution of the Governing Equations","authors":"Marta Wacławczyk, Jun-Ichi Yano, Grzegorz M. Florczyk","doi":"10.1007/s10546-024-00867-9","DOIUrl":null,"url":null,"abstract":"<p>The present paper shows that local similarity theories, proposed for the strongly-stratified boundary layers, can be derived as invariant solutions defined under the Lie-group theory. A system truncated to the mean momentum and buoyancy equations is considered for this purpose. The study further suggests how similarity functions for the mean profiles are determined from the vertical fluxes, with a potential dependence on a measure of the anisotropy of the system. A time scale that is likely to characterize the transiency of a system is also identified as a non-dimensionalization factor.</p>","PeriodicalId":9153,"journal":{"name":"Boundary-Layer Meteorology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boundary-Layer Meteorology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s10546-024-00867-9","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The present paper shows that local similarity theories, proposed for the strongly-stratified boundary layers, can be derived as invariant solutions defined under the Lie-group theory. A system truncated to the mean momentum and buoyancy equations is considered for this purpose. The study further suggests how similarity functions for the mean profiles are determined from the vertical fluxes, with a potential dependence on a measure of the anisotropy of the system. A time scale that is likely to characterize the transiency of a system is also identified as a non-dimensionalization factor.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
局部相似理论作为控制方程的不变解
本文表明,针对强层状边界层提出的局部相似性理论,可以作为根据李群理论定义的不变解推导出来。为此考虑了一个截断为平均动量方程和浮力方程的系统。研究进一步提出了如何根据垂直通量确定平均剖面的相似函数,以及系统各向异性的潜在依赖性。此外,还确定了一个可能表征系统瞬态的时间尺度,作为一个非尺寸化因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Boundary-Layer Meteorology
Boundary-Layer Meteorology 地学-气象与大气科学
CiteScore
7.50
自引率
14.00%
发文量
72
审稿时长
12 months
期刊介绍: Boundary-Layer Meteorology offers several publishing options: Research Letters, Research Articles, and Notes and Comments. The Research Letters section is designed to allow quick dissemination of new scientific findings, with an initial review period of no longer than one month. The Research Articles section offers traditional scientific papers that present results and interpretations based on substantial research studies or critical reviews of ongoing research. The Notes and Comments section comprises occasional notes and comments on specific topics with no requirement for rapid publication. Research Letters are limited in size to five journal pages, including no more than three figures, and cannot contain supplementary online material; Research Articles are generally fifteen to twenty pages in length with no more than fifteen figures; Notes and Comments are limited to ten journal pages and five figures. Authors submitting Research Letters should include within their cover letter an explanation of the need for rapid publication. More information regarding all publication formats can be found in the recent Editorial ‘Introducing Research Letters to Boundary-Layer Meteorology’.
期刊最新文献
Rethinking the Roughness Height: An Improved Description of Temperature Profiles over Short Vegetation On the Extent of Applicability of Various Non-linear Similarity Functions for Computation of Surface Fluxes under Stable Conditions in Numerical Models Dry Deposition: Sc−2/3 Revisited On the Departure from Monin–Obukhov Surface Similarity and Transition to the Convective Mixed Layer Eddy Scale-wise Topology Underlying Turbulence Anisotropy Illuminates the Dissimilar Transport of Momentum, Heat, and Moisture in a Stably Stratified Katabatic Flow
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1