Effect of Keratin Waste on Poly(ε-Caprolactone) Films: Structural Characterization, Thermal Properties, and Keratinocytes Viability and Proliferation Studies
{"title":"Effect of Keratin Waste on Poly(ε-Caprolactone) Films: Structural Characterization, Thermal Properties, and Keratinocytes Viability and Proliferation Studies","authors":"Gianluca Rinaldi, Elena Coccia, Nancy Ferrentino, Chiara Germinario, Celestino Grifa, Marina Paolucci, Daniela Pappalardo","doi":"10.1155/2024/3308910","DOIUrl":null,"url":null,"abstract":"<p>Keratin extracted (KE) from chicken feathers was used for the production of composite films comprising poly(<i>ε</i>-caprolactone) (PCL) and keratin (PCL/KE films). The process involved the extraction of keratin from chicken feathers using a 0.1 M NaOH solution, followed by characterization via sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The PCL was synthesized through the <i>ring-opening polymerization</i> (ROP) of <i>ε</i>-caprolactone (<i>ԑ</i>-CL) with Sn(Oct)<sub>2</sub> as a catalyst. Films were prepared via solvent casting, including pure PCL films and those enriched with different weight percentages of KE (10%, 15%, 25%, and 30%). The films were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TG), and scanning electron microscopy (SEM). SEM analysis revealed a more uniform incorporation of KE within the PCL matrix in the case of the 15% keratin-enriched film (PCL/KE15) as compared to other keratin percentages. The thermal analysis showed a positive influence of keratin on the thermal stability of the films. Keratinocytes viability and proliferation tests on the PCL/KE15 film demonstrated compatibility with cells. Collectively, these results hold relevance for potential biomedical applications of PCL/KE films.</p>","PeriodicalId":7372,"journal":{"name":"Advances in Polymer Technology","volume":"2024 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/3308910","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Polymer Technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/3308910","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Keratin extracted (KE) from chicken feathers was used for the production of composite films comprising poly(ε-caprolactone) (PCL) and keratin (PCL/KE films). The process involved the extraction of keratin from chicken feathers using a 0.1 M NaOH solution, followed by characterization via sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The PCL was synthesized through the ring-opening polymerization (ROP) of ε-caprolactone (ԑ-CL) with Sn(Oct)2 as a catalyst. Films were prepared via solvent casting, including pure PCL films and those enriched with different weight percentages of KE (10%, 15%, 25%, and 30%). The films were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TG), and scanning electron microscopy (SEM). SEM analysis revealed a more uniform incorporation of KE within the PCL matrix in the case of the 15% keratin-enriched film (PCL/KE15) as compared to other keratin percentages. The thermal analysis showed a positive influence of keratin on the thermal stability of the films. Keratinocytes viability and proliferation tests on the PCL/KE15 film demonstrated compatibility with cells. Collectively, these results hold relevance for potential biomedical applications of PCL/KE films.
期刊介绍:
Advances in Polymer Technology publishes articles reporting important developments in polymeric materials, their manufacture and processing, and polymer product design, as well as those considering the economic and environmental impacts of polymer technology. The journal primarily caters to researchers, technologists, engineers, consultants, and production personnel.