Examining the impact of hydro-geomorphological features in satellite river width-based discharge estimations

IF 1.4 4区 地球科学 Q4 ENVIRONMENTAL SCIENCES Journal of Applied Remote Sensing Pub Date : 2024-04-01 DOI:10.1117/1.jrs.18.024503
M. S. Adarsh, C. T. Dhanya, Shard Chander
{"title":"Examining the impact of hydro-geomorphological features in satellite river width-based discharge estimations","authors":"M. S. Adarsh, C. T. Dhanya, Shard Chander","doi":"10.1117/1.jrs.18.024503","DOIUrl":null,"url":null,"abstract":"We investigate the reliability of satellite river width (SRW) measurements to estimate the river discharge and its sensitivity to various hydro-geomorphological features. The study encompasses SRW extents at 141 in-situ hydrological observation stations, across seven tropical basins in India, with a mean annual discharge ranging from 2351 m3/s to less than 1 m3/s. Integrating optical (Sentinel-2, Landsat) and synthetic-aperture radar (SAR; Sentinel-1) data in the Google Earth Engine (GEE), 63,885 images are processed in the GEE to generate a dense time series of the SRW. Results demonstrate a good correlation (>0.50) between the SRW and in-situ discharge at 61 stations, primarily in the Godavari and Mahanadi basins. Furthermore, SRW-based rating curves exhibit reliable predictive capabilities at 44 stations, highlighting the potential to develop SRW rating curves in sparsely gauged basins. Investigations on the possible impact of different hydro-geomorphological features on the performance of the SRW to estimate the river discharge revealed optimal conditions in river reaches at lower elevations with substantial temporal variations in the discharge and associated variation in the river width along with a history of maximum water spread. Consequently, the Surface Water and Ocean Topography satellite’s river networks in the region are classified based on these findings, with 3567 out of 6132 river reaches identified as suitable for reliable SRW-based discharge estimation.","PeriodicalId":54879,"journal":{"name":"Journal of Applied Remote Sensing","volume":"21 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/1.jrs.18.024503","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the reliability of satellite river width (SRW) measurements to estimate the river discharge and its sensitivity to various hydro-geomorphological features. The study encompasses SRW extents at 141 in-situ hydrological observation stations, across seven tropical basins in India, with a mean annual discharge ranging from 2351 m3/s to less than 1 m3/s. Integrating optical (Sentinel-2, Landsat) and synthetic-aperture radar (SAR; Sentinel-1) data in the Google Earth Engine (GEE), 63,885 images are processed in the GEE to generate a dense time series of the SRW. Results demonstrate a good correlation (>0.50) between the SRW and in-situ discharge at 61 stations, primarily in the Godavari and Mahanadi basins. Furthermore, SRW-based rating curves exhibit reliable predictive capabilities at 44 stations, highlighting the potential to develop SRW rating curves in sparsely gauged basins. Investigations on the possible impact of different hydro-geomorphological features on the performance of the SRW to estimate the river discharge revealed optimal conditions in river reaches at lower elevations with substantial temporal variations in the discharge and associated variation in the river width along with a history of maximum water spread. Consequently, the Surface Water and Ocean Topography satellite’s river networks in the region are classified based on these findings, with 3567 out of 6132 river reaches identified as suitable for reliable SRW-based discharge estimation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考察水文地质特征对基于卫星河宽的排水量估算的影响
我们研究了卫星河宽(SRW)测量估算河流排放量的可靠性及其对各种水文地质特征的敏感性。这项研究涵盖了印度 7 个热带流域 141 个现场水文观测站的 SRW 范围,年平均排水量从 2351 立方米/秒到小于 1 立方米/秒不等。在谷歌地球引擎(GEE)中整合了光学(哨兵-2、大地遥感卫星)和合成孔径雷达(SAR;哨兵-1)数据,在 GEE 中处理了 63,885 幅图像,生成了 SRW 的密集时间序列。结果表明,SRW 与 61 个站点(主要位于戈达瓦里流域和马哈纳迪流域)的原位排水量之间存在良好的相关性(大于 0.50)。此外,基于 SRW 的定级曲线在 44 个站点显示出可靠的预测能力,突出表明了在测 量稀少的流域开发 SRW 定级曲线的潜力。关于不同水文地质特征对 SRW 估测河流排水量的性能可能产生的影响的调查显示,在海拔较低的河段,排水量和相关的河宽变化以及最大水量扩散的历史都有很大的时间变化,这些河段的条件最佳。因此,根据这些发现对地表水和海洋地形卫星在该区域的河网进行了分类,在6132条河段中有3567条河段被确定为适合进行可靠的基于SRW的排泄量估算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Applied Remote Sensing
Journal of Applied Remote Sensing 环境科学-成像科学与照相技术
CiteScore
3.40
自引率
11.80%
发文量
194
审稿时长
3 months
期刊介绍: The Journal of Applied Remote Sensing is a peer-reviewed journal that optimizes the communication of concepts, information, and progress among the remote sensing community.
期刊最新文献
Monitoring soil moisture in cotton fields with synthetic aperture radar and optical data in arid and semi-arid regions Cascaded CNN and global–local attention transformer network-based semantic segmentation for high-resolution remote sensing image Coastal chlorophyll-a concentration estimation by fusion of Sentinel-2 multispectral instrument and in-situ hyperspectral data Spectral index for estimating leaf water content across diverse plant species using multiple viewing angles Optimal band selection using explainable artificial intelligence for machine learning-based hyperspectral image classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1