{"title":"Predicting expected idiosyncratic volatility: Empirical evidence from ARFIMA, HAR, and EGARCH models","authors":"Chuxuan Xiao, Winifred Huang, David P. Newton","doi":"10.1007/s11156-024-01279-z","DOIUrl":null,"url":null,"abstract":"<p>We investigate the performances of the ARFIMA, HAR, and EGARCH models in capturing the time-varying property of idiosyncratic volatility (IVOL). We find that the expected IVOL predictions by HAR are superior. In diverse portfolio scenarios, a greater degree of judgment is required to assess the pricing ability of expected IVOLs. For the lowest value-weighted quintiles and the expected IVOL estimated by the HAR model, the IVOL-return relationship is negative. Conversely, the IVOL-return relationship is positive for the expected IVOL estimated by the EGARCH model. Further evidence suggests a complicated and mixed relationship between the expected IVOL estimated by the ARFIMA model and stock returns.</p>","PeriodicalId":47688,"journal":{"name":"Review of Quantitative Finance and Accounting","volume":"20 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Quantitative Finance and Accounting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11156-024-01279-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the performances of the ARFIMA, HAR, and EGARCH models in capturing the time-varying property of idiosyncratic volatility (IVOL). We find that the expected IVOL predictions by HAR are superior. In diverse portfolio scenarios, a greater degree of judgment is required to assess the pricing ability of expected IVOLs. For the lowest value-weighted quintiles and the expected IVOL estimated by the HAR model, the IVOL-return relationship is negative. Conversely, the IVOL-return relationship is positive for the expected IVOL estimated by the EGARCH model. Further evidence suggests a complicated and mixed relationship between the expected IVOL estimated by the ARFIMA model and stock returns.
期刊介绍:
Review of Quantitative Finance and Accounting deals with research involving the interaction of finance with accounting, economics, and quantitative methods, focused on finance and accounting. The papers published present useful theoretical and methodological results with the support of interesting empirical applications. Purely theoretical and methodological research with the potential for important applications is also published. Besides the traditional high-quality theoretical and empirical research in finance, the journal also publishes papers dealing with interdisciplinary topics.