Tracing microplastic sources in urban water bodies combining their diversity, fragmentation and stability

IF 10.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL npj Clean Water Pub Date : 2024-05-06 DOI:10.1038/s41545-024-00329-2
Jinqiong Niu, Dongyu Xu, Wenqiang Wu, Bo Gao
{"title":"Tracing microplastic sources in urban water bodies combining their diversity, fragmentation and stability","authors":"Jinqiong Niu, Dongyu Xu, Wenqiang Wu, Bo Gao","doi":"10.1038/s41545-024-00329-2","DOIUrl":null,"url":null,"abstract":"Tracing the sources of microplastics (MPs) across various environmental media is currently facing significant challenges due to their complex transportable features. In this study, we conducted a comprehensive identification of MP sources in Beijing water bodies by combining MP diversity and the conditional fragmentation model, thoroughly considering local multiple sources. The resemblance in MP community compositions implied shared or similar sources in rivers and lakes, and the sources were assorted and equivalent based on the high diversity of MPs. The conditional fragmentation model can act as a proxy of fragmentation characteristics of MPs. According to the model, suburban sewage, soils, and dry and wet deposition constituted significant sources of MPs in the rivers and lakes of Beijing. The extremely high abundance of MPs (520,000 items·m−3) in suburban sewage also confirmed it as a potential source. For MPs with different polymer types and morphologies, non-fibrous polypropylene (PP) was primarily controlled by soils, whereas the contribution of sewage sludge to fibrous polyethylene terephthalate (PET) was notable. Our study provides insights for more accurate source apportionment and contributes to a better understanding of MP fate in urban environment.","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":" ","pages":"1-9"},"PeriodicalIF":10.4000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41545-024-00329-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Clean Water","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41545-024-00329-2","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Tracing the sources of microplastics (MPs) across various environmental media is currently facing significant challenges due to their complex transportable features. In this study, we conducted a comprehensive identification of MP sources in Beijing water bodies by combining MP diversity and the conditional fragmentation model, thoroughly considering local multiple sources. The resemblance in MP community compositions implied shared or similar sources in rivers and lakes, and the sources were assorted and equivalent based on the high diversity of MPs. The conditional fragmentation model can act as a proxy of fragmentation characteristics of MPs. According to the model, suburban sewage, soils, and dry and wet deposition constituted significant sources of MPs in the rivers and lakes of Beijing. The extremely high abundance of MPs (520,000 items·m−3) in suburban sewage also confirmed it as a potential source. For MPs with different polymer types and morphologies, non-fibrous polypropylene (PP) was primarily controlled by soils, whereas the contribution of sewage sludge to fibrous polyethylene terephthalate (PET) was notable. Our study provides insights for more accurate source apportionment and contributes to a better understanding of MP fate in urban environment.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结合微塑料的多样性、破碎性和稳定性,追踪城市水体中微塑料的来源
由于微塑料(MPs)具有复杂的可迁移特性,因此在各种环境介质中追踪其来源是目前面临的重大挑战。在本研究中,我们结合MP多样性和条件破碎模型,综合考虑局部多源性,对北京水体中的MP来源进行了全面识别。MP群落组成的相似性意味着河流和湖泊中存在共同或相似的来源,而基于MP的高度多样性,这些来源是分类和等效的。条件破碎模型可作为 MPs 破碎特征的代表。根据该模型,郊区污水、土壤、干湿沉积物构成了北京河湖中 MPs 的重要来源。郊区污水中 MPs 的丰度极高(52 万个-m-3),这也证实了郊区污水是 MPs 的一个潜在来源。对于不同聚合物类型和形态的 MPs,非纤维状聚丙烯(PP)主要受土壤控制,而污水污泥对纤维状聚对苯二甲酸乙二酯(PET)的贡献显著。我们的研究为更准确的来源分配提供了见解,并有助于更好地了解 MP 在城市环境中的归宿。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Clean Water
npj Clean Water Environmental Science-Water Science and Technology
CiteScore
15.30
自引率
2.60%
发文量
61
审稿时长
5 weeks
期刊介绍: npj Clean Water publishes high-quality papers that report cutting-edge science, technology, applications, policies, and societal issues contributing to a more sustainable supply of clean water. The journal's publications may also support and accelerate the achievement of Sustainable Development Goal 6, which focuses on clean water and sanitation.
期刊最新文献
A review of advances & potential of applying nanomaterials for biofilm inhibition Balancing sustainability goals and treatment efficacy for PFAS removal from water Metal–phenolic coating on membrane for ultrafast antibiotics adsorptive removal from water Nanomaterial enhanced photoelectrocatalysis and photocatalysis for chemical oxygen demand sensing a comprehensive review Towards healthy and economically sustainable communities through clean water and resource recovery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1