Michael M. Wagner , William R. Hogan , John D. Levander , Matthew Diller
{"title":"Towards Machine-FAIR: Representing software and datasets to facilitate reuse and scientific discovery by machines","authors":"Michael M. Wagner , William R. Hogan , John D. Levander , Matthew Diller","doi":"10.1016/j.jbi.2024.104647","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>To use software, datasets, and data formats in the domain of Infectious Disease Epidemiology as a test collection to evaluate a novel <em>M1 use case</em>, which we introduce in this paper. M1 is a machine that upon receipt of a new digital object of research exhaustively finds all valid compositions of it with existing objects.</p></div><div><h3>Method</h3><p>We implemented a data-format-matching-only M1 using exhaustive search, which we refer to as M1<sub>DFM</sub>. We then ran M1<sub>DFM</sub> on the test collection and used error analysis to identify needed semantic constraints.</p></div><div><h3>Results</h3><p>Precision of M1<sub>DFM</sub> search was 61.7%. Error analysis identified needed semantic constraints and needed changes in handling of data services. Most semantic constraints were simple, but one data format was sufficiently complex to be practically impossible to represent semantic constraints over, from which we conclude limitatively that software developers will have to meet the machines halfway by engineering software whose inputs are sufficiently simple that their semantic constraints can be represented, akin to the simple APIs of services. We summarize these insights as M1-FAIR guiding principles for composability and suggest a roadmap for progressively capable devices in the service of reuse and accelerated scientific discovery.</p></div><div><h3>Conclusion</h3><p>Algorithmic search of digital repositories for valid workflow compositions has potential to accelerate scientific discovery but requires a scalable solution to the problem of knowledge acquisition about semantic constraints on software inputs. Additionally, practical limitations on the logical complexity of semantic constraints must be respected, which has implications for the design of software.</p></div>","PeriodicalId":15263,"journal":{"name":"Journal of Biomedical Informatics","volume":"154 ","pages":"Article 104647"},"PeriodicalIF":4.0000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1532046424000650/pdfft?md5=7430184232c45602f4b33a5d72e51310&pid=1-s2.0-S1532046424000650-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532046424000650","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
To use software, datasets, and data formats in the domain of Infectious Disease Epidemiology as a test collection to evaluate a novel M1 use case, which we introduce in this paper. M1 is a machine that upon receipt of a new digital object of research exhaustively finds all valid compositions of it with existing objects.
Method
We implemented a data-format-matching-only M1 using exhaustive search, which we refer to as M1DFM. We then ran M1DFM on the test collection and used error analysis to identify needed semantic constraints.
Results
Precision of M1DFM search was 61.7%. Error analysis identified needed semantic constraints and needed changes in handling of data services. Most semantic constraints were simple, but one data format was sufficiently complex to be practically impossible to represent semantic constraints over, from which we conclude limitatively that software developers will have to meet the machines halfway by engineering software whose inputs are sufficiently simple that their semantic constraints can be represented, akin to the simple APIs of services. We summarize these insights as M1-FAIR guiding principles for composability and suggest a roadmap for progressively capable devices in the service of reuse and accelerated scientific discovery.
Conclusion
Algorithmic search of digital repositories for valid workflow compositions has potential to accelerate scientific discovery but requires a scalable solution to the problem of knowledge acquisition about semantic constraints on software inputs. Additionally, practical limitations on the logical complexity of semantic constraints must be respected, which has implications for the design of software.
期刊介绍:
The Journal of Biomedical Informatics reflects a commitment to high-quality original research papers, reviews, and commentaries in the area of biomedical informatics methodology. Although we publish articles motivated by applications in the biomedical sciences (for example, clinical medicine, health care, population health, and translational bioinformatics), the journal emphasizes reports of new methodologies and techniques that have general applicability and that form the basis for the evolving science of biomedical informatics. Articles on medical devices; evaluations of implemented systems (including clinical trials of information technologies); or papers that provide insight into a biological process, a specific disease, or treatment options would generally be more suitable for publication in other venues. Papers on applications of signal processing and image analysis are often more suitable for biomedical engineering journals or other informatics journals, although we do publish papers that emphasize the information management and knowledge representation/modeling issues that arise in the storage and use of biological signals and images. System descriptions are welcome if they illustrate and substantiate the underlying methodology that is the principal focus of the report and an effort is made to address the generalizability and/or range of application of that methodology. Note also that, given the international nature of JBI, papers that deal with specific languages other than English, or with country-specific health systems or approaches, are acceptable for JBI only if they offer generalizable lessons that are relevant to the broad JBI readership, regardless of their country, language, culture, or health system.