A 30 m annual cropland dataset of China from 1986 to 2021

IF 11.2 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Earth System Science Data Pub Date : 2024-05-06 DOI:10.5194/essd-16-2297-2024
Ying Tu, Shengbiao Wu, Bin Chen, Qihao Weng, Yuqi Bai, Jun Yang, Le Yu, Bing Xu
{"title":"A 30 m annual cropland dataset of China from 1986 to 2021","authors":"Ying Tu, Shengbiao Wu, Bin Chen, Qihao Weng, Yuqi Bai, Jun Yang, Le Yu, Bing Xu","doi":"10.5194/essd-16-2297-2024","DOIUrl":null,"url":null,"abstract":"Abstract. Accurate, detailed, and up-to-date information on cropland extent is crucial for provisioning food security and environmental sustainability. However, because of the complexity of agricultural landscapes and lack of sufficient training samples, it remains challenging to monitor cropland dynamics at high spatial and temporal resolutions across large geographical extents, especially for regions where agricultural land use is changing dramatically. Here we developed a cost-effective annual cropland mapping framework that integrated time-series Landsat satellite imagery, automated training sample generation, as well as machine learning and change detection techniques. We implemented the proposed scheme to a cloud computing platform of Google Earth Engine and generated a novel dataset of China's annual cropland at a 30 m spatial resolution (namely CACD). Results demonstrated that our approach was capable of tracking dynamic cropland changes in different agricultural zones. The pixel-wise F1 scores for annual maps and change maps of CACD were 0.79 ± 0.02 and 0.81, respectively. Further cross-product comparisons, including accuracy assessment, correlations with statistics, and spatial details, highlighted the precision and robustness of CACD compared with other datasets. According to our estimation, from 1986 to 2021, China's total cropland area expanded by 30 300 km2 (1.79 %), which underwent an increase before 2002 but a general decline between 2002 and 2015, and a slight recovery afterward. Cropland expansion was concentrated in the northwest while the eastern, central, and southern regions experienced substantial cropland loss. In addition, we observed 419 342 km2 (17.57 %) of croplands that were abandoned at least once during the study period. The consistent, high-resolution data of CACD can support progress toward sustainable agricultural use and food production in various research applications. The full archive of CACD is freely available at https://doi.org/10.5281/zenodo.7936885 (Tu et al., 2023a).","PeriodicalId":48747,"journal":{"name":"Earth System Science Data","volume":"9 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth System Science Data","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/essd-16-2297-2024","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. Accurate, detailed, and up-to-date information on cropland extent is crucial for provisioning food security and environmental sustainability. However, because of the complexity of agricultural landscapes and lack of sufficient training samples, it remains challenging to monitor cropland dynamics at high spatial and temporal resolutions across large geographical extents, especially for regions where agricultural land use is changing dramatically. Here we developed a cost-effective annual cropland mapping framework that integrated time-series Landsat satellite imagery, automated training sample generation, as well as machine learning and change detection techniques. We implemented the proposed scheme to a cloud computing platform of Google Earth Engine and generated a novel dataset of China's annual cropland at a 30 m spatial resolution (namely CACD). Results demonstrated that our approach was capable of tracking dynamic cropland changes in different agricultural zones. The pixel-wise F1 scores for annual maps and change maps of CACD were 0.79 ± 0.02 and 0.81, respectively. Further cross-product comparisons, including accuracy assessment, correlations with statistics, and spatial details, highlighted the precision and robustness of CACD compared with other datasets. According to our estimation, from 1986 to 2021, China's total cropland area expanded by 30 300 km2 (1.79 %), which underwent an increase before 2002 but a general decline between 2002 and 2015, and a slight recovery afterward. Cropland expansion was concentrated in the northwest while the eastern, central, and southern regions experienced substantial cropland loss. In addition, we observed 419 342 km2 (17.57 %) of croplands that were abandoned at least once during the study period. The consistent, high-resolution data of CACD can support progress toward sustainable agricultural use and food production in various research applications. The full archive of CACD is freely available at https://doi.org/10.5281/zenodo.7936885 (Tu et al., 2023a).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
1986 至 2021 年中国 30 米年度耕地数据集
摘要准确、详细和最新的耕地范围信息对于保障粮食安全和环境可持续性至关重要。然而,由于农业景观的复杂性和缺乏足够的训练样本,在大地域范围内以高时空分辨率监测耕地动态仍然具有挑战性,尤其是在农业土地利用正在发生巨大变化的地区。在此,我们开发了一个具有成本效益的年度耕地绘图框架,该框架集成了时间序列大地卫星图像、自动训练样本生成以及机器学习和变化检测技术。我们在谷歌地球引擎的云计算平台上实施了所提出的方案,并生成了空间分辨率为 30 米的中国年度耕地新数据集(即 CACD)。结果表明,我们的方法能够跟踪不同农业区耕地的动态变化。CACD 年度图和变化图的像素级 F1 分数分别为 0.79 ± 0.02 和 0.81。进一步的交叉产品比较,包括精度评估、与统计数据的相关性和空间细节,突出了 CACD 与其他数据集相比的精度和稳健性。根据我们的估算,从 1986 年到 2021 年,中国耕地总面积增加了 30 300 平方公里(1.79%),其中 2002 年之前有所增加,但 2002 年至 2015 年期间总体有所减少,之后略有恢复。耕地面积扩大主要集中在西北部地区,而东部、中部和南部地区的耕地面积则大幅减少。此外,我们还观察到 419 342 平方公里(17.57%)的耕地在研究期间至少被废弃过一次。CACD 的一致、高分辨率数据可在各种研究应用中为实现农业可持续利用和粮食生产提供支持。CACD 的完整档案可在 https://doi.org/10.5281/zenodo.7936885 免费获取(Tu 等人,2023a)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Earth System Science Data
Earth System Science Data GEOSCIENCES, MULTIDISCIPLINARYMETEOROLOGY-METEOROLOGY & ATMOSPHERIC SCIENCES
CiteScore
18.00
自引率
5.30%
发文量
231
审稿时长
35 weeks
期刊介绍: Earth System Science Data (ESSD) is an international, interdisciplinary journal that publishes articles on original research data in order to promote the reuse of high-quality data in the field of Earth system sciences. The journal welcomes submissions of original data or data collections that meet the required quality standards and have the potential to contribute to the goals of the journal. It includes sections dedicated to regular-length articles, brief communications (such as updates to existing data sets), commentaries, review articles, and special issues. ESSD is abstracted and indexed in several databases, including Science Citation Index Expanded, Current Contents/PCE, Scopus, ADS, CLOCKSS, CNKI, DOAJ, EBSCO, Gale/Cengage, GoOA (CAS), and Google Scholar, among others.
期刊最新文献
A new repository of electrical resistivity tomography and ground-penetrating radar data from summer 2022 near Ny-Ålesund, Svalbard CCD-Rice: A long-term paddy rice distribution dataset in China at 30 m resolution SMOS-derived Antarctic thin sea ice thickness: data description and validation in the Weddell Sea Global Greenhouse Gas Reconciliation 2022 A daily reconstructed chlorophyll-a dataset in the South China Sea from MODIS using OI-SwinUnet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1