Colony identity clues for Syntermes grandis (Blattodea: Termitidae) individuals using near-infrared spectroscopy and PLS-DA approach.

IF 1.8 3区 农林科学 Q2 ENTOMOLOGY Environmental Entomology Pub Date : 2024-08-17 DOI:10.1093/ee/nvae037
Alexandre Dos Santos, Isabel Carolina Lima Dos Santos, Paula Maria de Souza Mendonça, Juliana Cristina Dos Santos, Antonio José Vinha Zanuncio, José Cola Zanuncio, Ronald Zanetti
{"title":"Colony identity clues for Syntermes grandis (Blattodea: Termitidae) individuals using near-infrared spectroscopy and PLS-DA approach.","authors":"Alexandre Dos Santos, Isabel Carolina Lima Dos Santos, Paula Maria de Souza Mendonça, Juliana Cristina Dos Santos, Antonio José Vinha Zanuncio, José Cola Zanuncio, Ronald Zanetti","doi":"10.1093/ee/nvae037","DOIUrl":null,"url":null,"abstract":"<p><p>Termites are social insects with high species diversity in tropical ecosystems. Multivariate analysis with near-infrared spectroscopy (NIRS) and data interpretation can separate social insects belonging to different colonies of the same species. The objective of this study was to propose the use of discriminant analysis by partial least squares (PLS-DA) combined with NIRS to identify the colonial origin of the Syntermes grandis (Rambur, 1842) (Blattodea: Termitidae) in 2 castes. Six ground S. grandis colonies were identified and mapped; 30 workers and 30 soldier termites in each colony were submitted to spectral measurement with NIRS. PLS-DA applied to the termites' spectral absorbance was used to detect a spectral pattern per S. grandis colony by caste. PLS-DA regression with NIRS proved to be an approach with 99.9% accuracy for identifying the colonial origin of S. grandis workers and 98.3% for soldiers. The methodology showed the importance of qualitatively characterizing the colonial phenotypic response of this species. NIRS is a high-precision approach to identifying the colony origin of S. grandis workers and soldiers. The PLS-DA can be used to design ecological field studies to identify colony territorial competition and foraging behavior of subterranean termite species.</p>","PeriodicalId":11751,"journal":{"name":"Environmental Entomology","volume":" ","pages":"561-566"},"PeriodicalIF":1.8000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Entomology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/ee/nvae037","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Termites are social insects with high species diversity in tropical ecosystems. Multivariate analysis with near-infrared spectroscopy (NIRS) and data interpretation can separate social insects belonging to different colonies of the same species. The objective of this study was to propose the use of discriminant analysis by partial least squares (PLS-DA) combined with NIRS to identify the colonial origin of the Syntermes grandis (Rambur, 1842) (Blattodea: Termitidae) in 2 castes. Six ground S. grandis colonies were identified and mapped; 30 workers and 30 soldier termites in each colony were submitted to spectral measurement with NIRS. PLS-DA applied to the termites' spectral absorbance was used to detect a spectral pattern per S. grandis colony by caste. PLS-DA regression with NIRS proved to be an approach with 99.9% accuracy for identifying the colonial origin of S. grandis workers and 98.3% for soldiers. The methodology showed the importance of qualitatively characterizing the colonial phenotypic response of this species. NIRS is a high-precision approach to identifying the colony origin of S. grandis workers and soldiers. The PLS-DA can be used to design ecological field studies to identify colony territorial competition and foraging behavior of subterranean termite species.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用近红外光谱和 PLS-DA 方法为大白蚁(Blattodea: Termitidae)个体提供蚁群识别线索。
白蚁是热带生态系统中物种多样性很高的社会性昆虫。利用近红外光谱(NIRS)进行多元分析和数据解读,可以将属于同一物种不同群落的社会性昆虫区分开来。本研究的目的是建议使用偏最小二乘法判别分析(PLS-DA)与近红外光谱分析相结合,来确定大白蚁(Syntermes grandis,Rambur,1842)(白蚁科:Termitidae)在两个种群中的群落起源。对 6 个地面白蚁群进行了鉴定和绘图;对每个白蚁群中的 30 只工蚁和 30 只兵蚁进行了近红外光谱测量。将 PLS-DA 应用于白蚁的光谱吸光度,以检测每个白蚁群的白蚁种属的光谱模式。事实证明,利用近红外光谱进行 PLS-DA 回归,可准确识别白蚁工蚁的蚁群来源,准确率为 99.9%,白蚁兵蚁的准确率为 98.3%。该方法显示了定性鉴定该物种殖民地表型反应的重要性。近红外光谱法是一种高精度的方法,可用于鉴别大冠花杉工蜂和兵蜂的群落起源。PLS-DA 可用于设计生态实地研究,以确定地下白蚁物种的群落领地竞争和觅食行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Entomology
Environmental Entomology 生物-昆虫学
CiteScore
3.90
自引率
5.90%
发文量
97
审稿时长
3-8 weeks
期刊介绍: Environmental Entomology is published bimonthly in February, April, June, August, October, and December. The journal publishes reports on the interaction of insects with the biological, chemical, and physical aspects of their environment. In addition to research papers, Environmental Entomology publishes Reviews, interpretive articles in a Forum section, and Letters to the Editor.
期刊最新文献
A review of non-microbial biological control strategies against the Asian longhorned beetle (Coleoptera: Cerambycidae). Addition of ammonium acetate to torula yeast borax and its effect on captures of three species of economically important fruit flies (Diptera: Tephritidae). Testing the efficacy of Trichogramma ostriniae (Hymenoptera: Trichogrammatidae) as a inundative biological control agent in Western Nebraska. Sex-ratio distortion in a weed biological control agent, Ceratapion basicorne (Coleoptera: Brentidae), associated with a species of Rickettsia. Catching invasives with curiosity: the importance of passive biosecurity surveillance systems for invasive forest pest detection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1