{"title":"Parasite infestation patterns differ between ticks and chigger mites on two rodent host species in Taiwan.","authors":"Chi-Chien Kuo, Jing-Lun Huang, Hsi-Chieh Wang","doi":"10.1007/s10493-024-00918-3","DOIUrl":null,"url":null,"abstract":"<p><p>Parasites are typically concentrated on a few host individuals, and identifying the mechanisms underlying aggregated distribution can facilitate a more targeted control of parasites. We investigated the infestation patterns of hard ticks and chigger mites on two rodent species, the striped field mouse, Apodemus agrarius, and the lesser ricefield rat, Rattus losea, in Taiwan. We also explored abiotic and biotic factors that were important in explaining variation in the abundance of ticks and chiggers on rodent hosts. Ticks were more aggregated than chiggers on both rodent species. Factors important for the variation in parasitic loads, especially biotic factors, largely differed between ticks and chiggers. Variation partitioning analyses revealed that a larger proportion of variation in chiggers than in ticks can be explained, especially by abiotic factors. If, as proposed, the higher number of parasites in males is due to a larger range area or immunity being suppressed by testosterone, when A. agrarius males host more ticks, they are expected to also host more chiggers, given that chiggers adopt a similar host finding approach to that of ticks. Instead, the similar abundance of chiggers in male and female A. agrarius implies that a large home range or suppressed immunity does not predispose males to inevitably host more parasites. More variations were explained by abiotic than biotic factors, suggesting that controlling practices are more likely to be successful by focusing on factors related to the environment instead of host traits. Our study indicated that the extent of parasitism is rarely determined by a sole factor, but is an outcome of complex interactions among animal physiology, animal behavior, characteristics of parasites, and the environments.</p>","PeriodicalId":12088,"journal":{"name":"Experimental and Applied Acarology","volume":" ","pages":"35-48"},"PeriodicalIF":1.8000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental and Applied Acarology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10493-024-00918-3","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Parasites are typically concentrated on a few host individuals, and identifying the mechanisms underlying aggregated distribution can facilitate a more targeted control of parasites. We investigated the infestation patterns of hard ticks and chigger mites on two rodent species, the striped field mouse, Apodemus agrarius, and the lesser ricefield rat, Rattus losea, in Taiwan. We also explored abiotic and biotic factors that were important in explaining variation in the abundance of ticks and chiggers on rodent hosts. Ticks were more aggregated than chiggers on both rodent species. Factors important for the variation in parasitic loads, especially biotic factors, largely differed between ticks and chiggers. Variation partitioning analyses revealed that a larger proportion of variation in chiggers than in ticks can be explained, especially by abiotic factors. If, as proposed, the higher number of parasites in males is due to a larger range area or immunity being suppressed by testosterone, when A. agrarius males host more ticks, they are expected to also host more chiggers, given that chiggers adopt a similar host finding approach to that of ticks. Instead, the similar abundance of chiggers in male and female A. agrarius implies that a large home range or suppressed immunity does not predispose males to inevitably host more parasites. More variations were explained by abiotic than biotic factors, suggesting that controlling practices are more likely to be successful by focusing on factors related to the environment instead of host traits. Our study indicated that the extent of parasitism is rarely determined by a sole factor, but is an outcome of complex interactions among animal physiology, animal behavior, characteristics of parasites, and the environments.
期刊介绍:
Experimental and Applied Acarology publishes peer-reviewed original papers describing advances in basic and applied research on mites and ticks. Coverage encompasses all Acari, including those of environmental, agricultural, medical and veterinary importance, and all the ways in which they interact with other organisms (plants, arthropods and other animals). The subject matter draws upon a wide variety of disciplines, including evolutionary biology, ecology, epidemiology, physiology, biochemistry, toxicology, immunology, genetics, molecular biology and pest management sciences.