Single-cell RNA sequencing reveals that an imbalance in monocyte subsets rather than changes in gene expression patterns is a feature of postmenopausal osteoporosis.

IF 5.1 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Journal of Bone and Mineral Research Pub Date : 2024-08-05 DOI:10.1093/jbmr/zjae065
Lin Tao, Wen Jiang, Hao Li, Xiaochuan Wang, Zixuan Tian, Keda Yang, Yue Zhu
{"title":"Single-cell RNA sequencing reveals that an imbalance in monocyte subsets rather than changes in gene expression patterns is a feature of postmenopausal osteoporosis.","authors":"Lin Tao, Wen Jiang, Hao Li, Xiaochuan Wang, Zixuan Tian, Keda Yang, Yue Zhu","doi":"10.1093/jbmr/zjae065","DOIUrl":null,"url":null,"abstract":"<p><p>The role of monocytes in postmenopausal osteoporosis is widely recognized; however, the mechanisms underlying monocyte reprogramming remain unknown. In this study, single-cell RNA sequencing (scRNA-seq) was conducted on CD14+ bone marrow monocytes obtained from 3 postmenopausal women with normal BMD and 3 women with postmenopausal osteoporosis (PMOP). Monocle2 was used to classify the monocytes into 7 distinct clusters. The proportion of cluster 1 significantly decreased in PMOP patients, while the proportion of cluster 7 increased. Further analysis via GSEA, transcription factor activity analysis, and sc-metabolic analysis revealed significant differences between clusters 1 and 7. Cluster 7 exhibited upregulated pathways associated with inflammation, immunity, and osteoclast differentiation, whereas cluster 1 demonstrated the opposite results. Monocle2, TSCAN, VECTOR, and scVelo data indicated that cluster 1 represented the initial subset and that cluster 7 represents one of the terminal subsets. BayesPrism and ssGSEA were employed to analyze the bulk transcriptome data obtained from the GEO database. The observed alterations in the proportions of 1 and 7 were validated and found to have diagnostic significance. CD16 serves as the marker gene for cluster 7, thus leading to an increased proportion of CD16+ monocytes in women with PMOP. Flow cytometry was used to assess the consistency of outcomes with those of the bioinformatic analysis. Subsequently, an additional scRNA-seq analysis was conducted on bone marrow mononuclear cells obtained from 3 patients with PMOP and 3 postmenopausal women with normal BMD. The differential proportions of cluster 1 and cluster 7 were once again confirmed, with the pathological effect of cluster 7 may attribute to cell-cell communication. The scRNA-seq findings suggest that an imbalance in monocyte subsets is a characteristic feature of PMOP. These findings elucidate the limitations of utilizing bulk transcriptome data for detecting alterations in monocytes, which may influence novel research inquiries.</p>","PeriodicalId":185,"journal":{"name":"Journal of Bone and Mineral Research","volume":" ","pages":"980-993"},"PeriodicalIF":5.1000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bone and Mineral Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jbmr/zjae065","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

The role of monocytes in postmenopausal osteoporosis is widely recognized; however, the mechanisms underlying monocyte reprogramming remain unknown. In this study, single-cell RNA sequencing (scRNA-seq) was conducted on CD14+ bone marrow monocytes obtained from 3 postmenopausal women with normal BMD and 3 women with postmenopausal osteoporosis (PMOP). Monocle2 was used to classify the monocytes into 7 distinct clusters. The proportion of cluster 1 significantly decreased in PMOP patients, while the proportion of cluster 7 increased. Further analysis via GSEA, transcription factor activity analysis, and sc-metabolic analysis revealed significant differences between clusters 1 and 7. Cluster 7 exhibited upregulated pathways associated with inflammation, immunity, and osteoclast differentiation, whereas cluster 1 demonstrated the opposite results. Monocle2, TSCAN, VECTOR, and scVelo data indicated that cluster 1 represented the initial subset and that cluster 7 represents one of the terminal subsets. BayesPrism and ssGSEA were employed to analyze the bulk transcriptome data obtained from the GEO database. The observed alterations in the proportions of 1 and 7 were validated and found to have diagnostic significance. CD16 serves as the marker gene for cluster 7, thus leading to an increased proportion of CD16+ monocytes in women with PMOP. Flow cytometry was used to assess the consistency of outcomes with those of the bioinformatic analysis. Subsequently, an additional scRNA-seq analysis was conducted on bone marrow mononuclear cells obtained from 3 patients with PMOP and 3 postmenopausal women with normal BMD. The differential proportions of cluster 1 and cluster 7 were once again confirmed, with the pathological effect of cluster 7 may attribute to cell-cell communication. The scRNA-seq findings suggest that an imbalance in monocyte subsets is a characteristic feature of PMOP. These findings elucidate the limitations of utilizing bulk transcriptome data for detecting alterations in monocytes, which may influence novel research inquiries.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单细胞 RNA 测序显示,绝经后骨质疏松症的特征是单核细胞亚群的失衡,而不是基因表达模式的变化。
单核细胞在绝经后骨质疏松症中的作用已得到广泛认可;然而,单核细胞重编程的内在机制仍然未知。在这项研究中,研究人员对从三名骨矿密度(BMD)正常的绝经后妇女和三名绝经后骨质疏松症(PMOP)妇女体内获得的 CD14+ 骨髓单核细胞进行了单细胞 RNA 测序(scRNA-seq)。用 Monocle2 将单核细胞分为 7 个不同的群。在 PMOP 患者中,簇 1 的比例明显降低,而簇 7 的比例则有所增加。通过GSEA、转录因子活性分析和sc-代谢分析进行的进一步分析表明,第1群组和第7群组之间存在显著差异。第 7 组显示出与炎症、免疫和破骨细胞分化相关的通路上调,而第 1 组则显示出相反的结果。Monocle2、TSCAN、VECTOR 和 scVelo 数据表明,簇 1 代表初始亚群,而簇 7 代表终结亚群之一。贝叶斯棱镜(BayesPrism)和ssGSEA被用来分析从GEO数据库中获得的大量转录组数据。观察到的簇 1 和簇 7 比例的变化得到了验证,并发现它们具有诊断意义。CD16 是第 7 簇的标记基因,因此导致 PMOP 女性患者中 CD16+ 单核细胞的比例增加。流式细胞术用于评估结果与生物信息学分析结果的一致性。随后,又对从三名 PMOP 患者和三名绝经后 BMD 正常的妇女体内获得的骨髓单核细胞进行了 scRNA-seq 分析。第 1 组和第 7 组的不同比例再次得到证实,第 7 组的病理效应可能归因于细胞间的交流。scRNA-seq研究结果表明,单核细胞亚群失衡是PMOP的一个特征。这些发现阐明了利用大容量转录组数据检测单核细胞变化的局限性,这可能会影响新的研究探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Bone and Mineral Research
Journal of Bone and Mineral Research 医学-内分泌学与代谢
CiteScore
11.30
自引率
6.50%
发文量
257
审稿时长
2 months
期刊介绍: The Journal of Bone and Mineral Research (JBMR) publishes highly impactful original manuscripts, reviews, and special articles on basic, translational and clinical investigations relevant to the musculoskeletal system and mineral metabolism. Specifically, the journal is interested in original research on the biology and physiology of skeletal tissues, interdisciplinary research spanning the musculoskeletal and other systems, including but not limited to immunology, hematology, energy metabolism, cancer biology, and neurology, and systems biology topics using large scale “-omics” approaches. The journal welcomes clinical research on the pathophysiology, treatment and prevention of osteoporosis and fractures, as well as sarcopenia, disorders of bone and mineral metabolism, and rare or genetically determined bone diseases.
期刊最新文献
Long-duration type 1 diabetes is associated with deficient cortical bone mechanical behavior and altered matrix composition in human femoral bone. One day at a time: understanding how 24-hour physical activity, sedentary behavior and sleep patterns influence falls and fracture risk. A systematic review and meta-analysis of the effects of probiotics on bone outcomes in rodent models. Vertebral fracture prevalence and risk factors for fracture in the Gambia, West Africa: the Gambian bone and muscle ageing study. Modeling of Skeletal Development and Diseases Using Human Pluripotent Stem Cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1