Konstantinos Kalogeropoulos, Aleksander Moldt Haack, Elizabeta Madzharova, Antea Di Lorenzo, Rawad Hanna, Erwin M Schoof, Ulrich Auf dem Keller
{"title":"CLIPPER 2.0: Peptide-Level Annotation and Data Analysis for Positional Proteomics.","authors":"Konstantinos Kalogeropoulos, Aleksander Moldt Haack, Elizabeta Madzharova, Antea Di Lorenzo, Rawad Hanna, Erwin M Schoof, Ulrich Auf dem Keller","doi":"10.1016/j.mcpro.2024.100781","DOIUrl":null,"url":null,"abstract":"<p><p>Positional proteomics methodologies have transformed protease research, and have brought mass spectrometry (MS)-based degradomics studies to the forefront of protease characterization and system-wide interrogation of protease signaling. Considerable advancements in both sensitivity and throughput of liquid chromatography (LC)-MS/MS instrumentation enable the generation of enormous positional proteomics datasets of natural and protein termini and neo-termini of cleaved protease substrates. However, concomitant progress has not been observed to the same extent in data analysis and post-processing steps, arguably constituting the largest bottleneck in positional proteomics workflows. Here, we present a computational tool, CLIPPER 2.0, that builds on prior algorithms developed for MS-based protein termini analysis, facilitating peptide-level annotation and data analysis. CLIPPER 2.0 can be used with several sample preparation workflows and proteomics search algorithms and enables fast and automated database information retrieval, statistical and network analysis, as well as visualization of terminomic datasets. We demonstrate the applicability of our tool by analyzing GluC and MMP9 cleavages in HeLa lysates. CLIPPER 2.0 is available at https://github.com/UadKLab/CLIPPER-2.0.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100781"},"PeriodicalIF":6.1000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11192779/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Proteomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.mcpro.2024.100781","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Positional proteomics methodologies have transformed protease research, and have brought mass spectrometry (MS)-based degradomics studies to the forefront of protease characterization and system-wide interrogation of protease signaling. Considerable advancements in both sensitivity and throughput of liquid chromatography (LC)-MS/MS instrumentation enable the generation of enormous positional proteomics datasets of natural and protein termini and neo-termini of cleaved protease substrates. However, concomitant progress has not been observed to the same extent in data analysis and post-processing steps, arguably constituting the largest bottleneck in positional proteomics workflows. Here, we present a computational tool, CLIPPER 2.0, that builds on prior algorithms developed for MS-based protein termini analysis, facilitating peptide-level annotation and data analysis. CLIPPER 2.0 can be used with several sample preparation workflows and proteomics search algorithms and enables fast and automated database information retrieval, statistical and network analysis, as well as visualization of terminomic datasets. We demonstrate the applicability of our tool by analyzing GluC and MMP9 cleavages in HeLa lysates. CLIPPER 2.0 is available at https://github.com/UadKLab/CLIPPER-2.0.
期刊介绍:
The mission of MCP is to foster the development and applications of proteomics in both basic and translational research. MCP will publish manuscripts that report significant new biological or clinical discoveries underpinned by proteomic observations across all kingdoms of life. Manuscripts must define the biological roles played by the proteins investigated or their mechanisms of action.
The journal also emphasizes articles that describe innovative new computational methods and technological advancements that will enable future discoveries. Manuscripts describing such approaches do not have to include a solution to a biological problem, but must demonstrate that the technology works as described, is reproducible and is appropriate to uncover yet unknown protein/proteome function or properties using relevant model systems or publicly available data.
Scope:
-Fundamental studies in biology, including integrative "omics" studies, that provide mechanistic insights
-Novel experimental and computational technologies
-Proteogenomic data integration and analysis that enable greater understanding of physiology and disease processes
-Pathway and network analyses of signaling that focus on the roles of post-translational modifications
-Studies of proteome dynamics and quality controls, and their roles in disease
-Studies of evolutionary processes effecting proteome dynamics, quality and regulation
-Chemical proteomics, including mechanisms of drug action
-Proteomics of the immune system and antigen presentation/recognition
-Microbiome proteomics, host-microbe and host-pathogen interactions, and their roles in health and disease
-Clinical and translational studies of human diseases
-Metabolomics to understand functional connections between genes, proteins and phenotypes