{"title":"Applications of Deep Learning in Trauma Radiology: A Narrative Review.","authors":"Chi-Tung Cheng, Chun-Hsiang Ooyang, Shih-Ching Kang, Chien-Hung Liao","doi":"10.1016/j.bj.2024.100743","DOIUrl":null,"url":null,"abstract":"<p><p>Diagnostic imaging is essential in modern trauma care for initial evaluation and identifying injuries requiring intervention. Deep learning (DL) has become mainstream in medical image analysis and has shown promising efficacy for classification, segmentation, and lesion detection. This narrative review provides the fundamental concepts for developing DL algorithms in trauma imaging and presents an overview of current progress in each modality. DL has been applied to detect free fluid on Focused Assessment with Sonography for Trauma (FAST), traumatic findings on chest and pelvic X-rays, and computed tomography (CT) scans, identify intracranial hemorrhage on head CT, detect vertebral fractures, and identify injuries to organs like the spleen, liver, and lungs on abdominal and chest CT. Future directions involve expanding dataset size and diversity through federated learning, enhancing model explainability and transparency to build clinician trust, and integrating multimodal data to provide more meaningful insights into traumatic injuries. Though some commercial artificial intelligence products are Food and Drug Administration-approved for clinical use in the trauma field, adoption remains limited, highlighting the need for multi-disciplinary teams to engineer practical, real-world solutions. Overall, DL shows immense potential to improve the efficiency and accuracy of trauma imaging, but thoughtful development and validation are critical to ensure these technologies positively impact patient care.</p>","PeriodicalId":8934,"journal":{"name":"Biomedical Journal","volume":" ","pages":"100743"},"PeriodicalIF":4.1000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.bj.2024.100743","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Diagnostic imaging is essential in modern trauma care for initial evaluation and identifying injuries requiring intervention. Deep learning (DL) has become mainstream in medical image analysis and has shown promising efficacy for classification, segmentation, and lesion detection. This narrative review provides the fundamental concepts for developing DL algorithms in trauma imaging and presents an overview of current progress in each modality. DL has been applied to detect free fluid on Focused Assessment with Sonography for Trauma (FAST), traumatic findings on chest and pelvic X-rays, and computed tomography (CT) scans, identify intracranial hemorrhage on head CT, detect vertebral fractures, and identify injuries to organs like the spleen, liver, and lungs on abdominal and chest CT. Future directions involve expanding dataset size and diversity through federated learning, enhancing model explainability and transparency to build clinician trust, and integrating multimodal data to provide more meaningful insights into traumatic injuries. Though some commercial artificial intelligence products are Food and Drug Administration-approved for clinical use in the trauma field, adoption remains limited, highlighting the need for multi-disciplinary teams to engineer practical, real-world solutions. Overall, DL shows immense potential to improve the efficiency and accuracy of trauma imaging, but thoughtful development and validation are critical to ensure these technologies positively impact patient care.
期刊介绍:
Biomedical Journal publishes 6 peer-reviewed issues per year in all fields of clinical and biomedical sciences for an internationally diverse authorship. Unlike most open access journals, which are free to readers but not authors, Biomedical Journal does not charge for subscription, submission, processing or publication of manuscripts, nor for color reproduction of photographs.
Clinical studies, accounts of clinical trials, biomarker studies, and characterization of human pathogens are within the scope of the journal, as well as basic studies in model species such as Escherichia coli, Caenorhabditis elegans, Drosophila melanogaster, and Mus musculus revealing the function of molecules, cells, and tissues relevant for human health. However, articles on other species can be published if they contribute to our understanding of basic mechanisms of biology.
A highly-cited international editorial board assures timely publication of manuscripts. Reviews on recent progress in biomedical sciences are commissioned by the editors.