Mathematical Modeling of Photo- and Thermomorphogenesis in Plants.

Q4 Biochemistry, Genetics and Molecular Biology Methods in molecular biology Pub Date : 2024-01-01 DOI:10.1007/978-1-0716-3814-9_23
Gabriel Rodriguez-Maroto, Pablo Catalán, Cristina Nieto, Salomé Prat, Saúl Ares
{"title":"Mathematical Modeling of Photo- and Thermomorphogenesis in Plants.","authors":"Gabriel Rodriguez-Maroto, Pablo Catalán, Cristina Nieto, Salomé Prat, Saúl Ares","doi":"10.1007/978-1-0716-3814-9_23","DOIUrl":null,"url":null,"abstract":"<p><p>Increased day lengths and warm conditions inversely affect plant growth by directly modulating nuclear phyB, ELF3, and COP1 levels. Quantitative measures of the hypocotyl length have been key to gaining a deeper understanding of this complex regulatory network, while similar quantitative data are the foundation for many studies in plant biology. Here, we explore the application of mathematical modeling, specifically ordinary differential equations (ODEs), to understand plant responses to these environmental cues. We provide a comprehensive guide to constructing, simulating, and fitting these models to data, using the law of mass action to study the evolution of molecular species. The fundamental principles of these models are introduced, highlighting their utility in deciphering complex plant physiological interactions and testing hypotheses. This brief introduction will not allow experimentalists without a mathematical background to run their own simulations overnight, but it will help them grasp modeling principles and communicate with more theory-inclined colleagues.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":"2795 ","pages":"247-261"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-1-0716-3814-9_23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Increased day lengths and warm conditions inversely affect plant growth by directly modulating nuclear phyB, ELF3, and COP1 levels. Quantitative measures of the hypocotyl length have been key to gaining a deeper understanding of this complex regulatory network, while similar quantitative data are the foundation for many studies in plant biology. Here, we explore the application of mathematical modeling, specifically ordinary differential equations (ODEs), to understand plant responses to these environmental cues. We provide a comprehensive guide to constructing, simulating, and fitting these models to data, using the law of mass action to study the evolution of molecular species. The fundamental principles of these models are introduced, highlighting their utility in deciphering complex plant physiological interactions and testing hypotheses. This brief introduction will not allow experimentalists without a mathematical background to run their own simulations overnight, but it will help them grasp modeling principles and communicate with more theory-inclined colleagues.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
植物光热蜕变的数学建模
昼长增加和温暖条件通过直接调节核 phyB、ELF3 和 COP1 水平对植物生长产生反向影响。对下胚轴长度的定量测量是深入了解这一复杂调控网络的关键,而类似的定量数据也是许多植物生物学研究的基础。在这里,我们探讨了数学建模的应用,特别是常微分方程(ODE),以了解植物对这些环境线索的反应。我们将全面指导如何构建、模拟这些模型并将其与数据拟合,利用质量作用定律来研究分子物种的进化。我们介绍了这些模型的基本原理,强调了它们在破译复杂的植物生理相互作用和检验假设方面的作用。这一简要介绍不会让没有数学背景的实验人员在一夜之间就能运行自己的模拟,但会帮助他们掌握建模原理,并与更倾向于理论的同事进行交流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Methods in molecular biology
Methods in molecular biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
2.00
自引率
0.00%
发文量
3536
期刊介绍: For over 20 years, biological scientists have come to rely on the research protocols and methodologies in the critically acclaimed Methods in Molecular Biology series. The series was the first to introduce the step-by-step protocols approach that has become the standard in all biomedical protocol publishing. Each protocol is provided in readily-reproducible step-by-step fashion, opening with an introductory overview, a list of the materials and reagents needed to complete the experiment, and followed by a detailed procedure that is supported with a helpful notes section offering tips and tricks of the trade as well as troubleshooting advice.
期刊最新文献
A Guideline Strategy for Identifying a Viral Gene/Protein Evading Antiviral Innate Immunity. A Guideline Strategy for Identifying Genes/Proteins Regulating Antiviral Innate Immunity. Application of Proteomics Technology Based on LC-MS Combined with Western Blotting and Co-IP in Antiviral Innate Immunity. Click Chemistry in Detecting Protein Modification. CRISPR-Mediated Construction of Gene-Knockout Mice for Investigating Antiviral Innate Immunity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1