Plasma Steroid Profiling Combined With Machine Learning for the Differential Diagnosis in Mild Autonomous Cortisol Secretion From Nonfunctioning Adenoma in Patients With Adrenal Incidentalomas

IF 3.7 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM Endocrine Practice Pub Date : 2024-07-01 DOI:10.1016/j.eprac.2024.04.008
Danni Mu MD , Xia Qian BD , Yichen Ma BD , Xi Wang PhD , Yumeng Gao BD , Xiaoli Ma PhD , Shaowei Xie BD , Lian Hou MD , Qi Zhang MD , Fang Zhao BD , Liangyu Xia MD , Liling Lin PhD , Ling Qiu MD , Jie Wu PhD , Songlin Yu MD , Xinqi Cheng PhD
{"title":"Plasma Steroid Profiling Combined With Machine Learning for the Differential Diagnosis in Mild Autonomous Cortisol Secretion From Nonfunctioning Adenoma in Patients With Adrenal Incidentalomas","authors":"Danni Mu MD ,&nbsp;Xia Qian BD ,&nbsp;Yichen Ma BD ,&nbsp;Xi Wang PhD ,&nbsp;Yumeng Gao BD ,&nbsp;Xiaoli Ma PhD ,&nbsp;Shaowei Xie BD ,&nbsp;Lian Hou MD ,&nbsp;Qi Zhang MD ,&nbsp;Fang Zhao BD ,&nbsp;Liangyu Xia MD ,&nbsp;Liling Lin PhD ,&nbsp;Ling Qiu MD ,&nbsp;Jie Wu PhD ,&nbsp;Songlin Yu MD ,&nbsp;Xinqi Cheng PhD","doi":"10.1016/j.eprac.2024.04.008","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>To assess the diagnostic value of combining plasma steroid profiling with machine learning (ML) in differentiating between mild autonomous cortisol secretion (MACS) and nonfunctioning adenoma (NFA) in patients with adrenal incidentalomas.</p></div><div><h3>Methods</h3><p>The plasma steroid profiles data in the laboratory information system were screened from January 2021 to December 2023. EXtreme Gradient Boosting was applied to establish diagnostic models using plasma 24-steroid panels and/or clinical characteristics of the subjects. The SHapley Additive exPlanation (SHAP) method was used for explaining the model.</p></div><div><h3>Results</h3><p>Seventy-six patients with MACS and 86 patients with NFA were included in the development and internal validation cohort while the external validation cohort consisted of 27 MACS and 21 NFA cases. Among 5 ML models evaluated, eXtreme Gradient Boosting demonstrated superior performance with an area under the curve of 0.77 using 24 steroid hormones. The SHAP method identified 5 steroids that exhibited optimal performance in distinguishing MACS from NFA, namely dehydroepiandrosterone, 11-deoxycortisol, 11β-hydroxytestosterone, testosterone, and dehydroepiandrosteronesulfate. Upon incorporating clinical features into the model, the area under the curve increased to 0.88, with a sensitivity of 0.77 and specificity of 0.82. Furthermore, the results obtained through SHAP revealed that lower levels of testosterone, dehydroepiandrosterone, low-density lipoprotein cholesterol, body mass index, and adrenocorticotropic hormone along with higher level of 11-deoxycortisol significantly contributed to the identification of MACS in the model.</p></div><div><h3>Conclusions</h3><p>We have elucidated the utilization of ML-based steroid profiling to discriminate between MACS and NFA in patients with adrenal incidentalomas. This approach holds promise for distinguishing these 2 entities through a single blood collection.</p></div>","PeriodicalId":11682,"journal":{"name":"Endocrine Practice","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrine Practice","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1530891X24004981","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Objective

To assess the diagnostic value of combining plasma steroid profiling with machine learning (ML) in differentiating between mild autonomous cortisol secretion (MACS) and nonfunctioning adenoma (NFA) in patients with adrenal incidentalomas.

Methods

The plasma steroid profiles data in the laboratory information system were screened from January 2021 to December 2023. EXtreme Gradient Boosting was applied to establish diagnostic models using plasma 24-steroid panels and/or clinical characteristics of the subjects. The SHapley Additive exPlanation (SHAP) method was used for explaining the model.

Results

Seventy-six patients with MACS and 86 patients with NFA were included in the development and internal validation cohort while the external validation cohort consisted of 27 MACS and 21 NFA cases. Among 5 ML models evaluated, eXtreme Gradient Boosting demonstrated superior performance with an area under the curve of 0.77 using 24 steroid hormones. The SHAP method identified 5 steroids that exhibited optimal performance in distinguishing MACS from NFA, namely dehydroepiandrosterone, 11-deoxycortisol, 11β-hydroxytestosterone, testosterone, and dehydroepiandrosteronesulfate. Upon incorporating clinical features into the model, the area under the curve increased to 0.88, with a sensitivity of 0.77 and specificity of 0.82. Furthermore, the results obtained through SHAP revealed that lower levels of testosterone, dehydroepiandrosterone, low-density lipoprotein cholesterol, body mass index, and adrenocorticotropic hormone along with higher level of 11-deoxycortisol significantly contributed to the identification of MACS in the model.

Conclusions

We have elucidated the utilization of ML-based steroid profiling to discriminate between MACS and NFA in patients with adrenal incidentalomas. This approach holds promise for distinguishing these 2 entities through a single blood collection.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
血浆类固醇分析与机器学习相结合,用于鉴别诊断肾上腺偶发瘤患者无功能腺瘤引起的轻度皮质醇自主分泌。
背景:目的:评估血浆类固醇分析与机器学习(ML)相结合在肾上腺偶发瘤患者中区分轻度自主皮质醇分泌(MACS)和非功能性腺瘤(NFA)的诊断价值:筛选了实验室信息系统中2021年1月至2023年12月的血浆类固醇谱数据。应用极梯度提升(XGBoost)技术,利用血浆中的 24 种类固醇和/或受试者的临床特征建立诊断模型。结果显示,76 例 MACS 患者和 86 例 MACS 患者的血浆中均含有类固醇:76例MACS患者和86例NFA患者被纳入开发和内部验证队列,外部验证队列包括27例MACS和21例NFA病例。在评估的五个 ML 模型中,XGBoost 使用 24 种类固醇激素显示出卓越的性能,AUC 为 0.77。SHAP 方法确定了在区分 MACS 和 NFA 方面表现最佳的五种类固醇激素,即脱氢表雄酮(DHEA)、11-脱氧皮质醇、11β-羟基睾酮、睾酮和脱氢表雄酮硫酸盐(DHEAS)。将临床特征纳入模型后,AUC 增加到 0.88,灵敏度为 0.77,特异性为 0.82。此外,通过 SHAP 获得的结果显示,较低水平的睾酮、DHEA、LDL-c、体重指数和促肾上腺皮质激素以及较高水平的 11-脱氧皮质醇显著有助于在模型中识别澳门巴黎人娱乐官网:我们阐明了如何利用基于 ML 的类固醇分析来区分肾上腺偶发瘤患者中的 MACS 和 NFA。这种方法有望通过一次采血区分这两种实体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Endocrine Practice
Endocrine Practice ENDOCRINOLOGY & METABOLISM-
CiteScore
7.60
自引率
2.40%
发文量
546
审稿时长
41 days
期刊介绍: Endocrine Practice (ISSN: 1530-891X), a peer-reviewed journal published twelve times a year, is the official journal of the American Association of Clinical Endocrinologists (AACE). The primary mission of Endocrine Practice is to enhance the health care of patients with endocrine diseases through continuing education of practicing endocrinologists.
期刊最新文献
The Stress-Induced Hyperprolactinemia Might Not be That Stress-Induced as Argued: Observational Case-Control Study. Table of contents Editorial Board Predicting Metformin Efficacy in Improving Insulin Sensitivity Among Women With Polycystic Ovary Syndrome and Insulin Resistance: A Machine Learning Study Thyroid Function and Cognitive Decline: A Narrative Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1