Classification of colon cancer patients into consensus molecular subtypes using support vector machines.

Turkish journal of biology = Turk biyoloji dergisi Pub Date : 2023-12-15 eCollection Date: 2023-01-01 DOI:10.55730/1300-0152.2674
Necla Koçhan, Barış Emre Dayanç
{"title":"Classification of colon cancer patients into consensus molecular subtypes using support vector machines.","authors":"Necla Koçhan, Barış Emre Dayanç","doi":"10.55730/1300-0152.2674","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/aim: </strong>The molecular heterogeneity of colon cancer has made classification of tumors a requirement for effective treatment. One of the approaches for molecular subtyping of colon cancer patients is the consensus molecular subtypes (CMS), developed by the Colorectal Cancer Subtyping Consortium. CMS-specific RNA-Seq-dependent classification approaches are recent, with relatively low sensitivity and specificity. In this study, we aimed to classify patients into CMS groups using their RNA-seq profiles.</p><p><strong>Materials and methods: </strong>We first identified subtype-specific and survival-associated genes using the Fuzzy C-Means algorithm and log-rank test. We then classified patients using support vector machines with backward elimination methodology.</p><p><strong>Results: </strong>We optimized RNA-seq-based classification using 25 genes with a minimum classification error rate. In this study, we reported the classification performance using precision, sensitivity, specificity, false discovery rate, and balanced accuracy metrics.</p><p><strong>Conclusion: </strong>We present a gene list for colon cancer classification with minimum classification error rates and observed the lowest sensitivity but the highest specificity with CMS3-associated genes, which significantly differed due to the low number of patients in the clinic for this group.</p>","PeriodicalId":94363,"journal":{"name":"Turkish journal of biology = Turk biyoloji dergisi","volume":"47 6","pages":"406-412"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11045208/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish journal of biology = Turk biyoloji dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55730/1300-0152.2674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background/aim: The molecular heterogeneity of colon cancer has made classification of tumors a requirement for effective treatment. One of the approaches for molecular subtyping of colon cancer patients is the consensus molecular subtypes (CMS), developed by the Colorectal Cancer Subtyping Consortium. CMS-specific RNA-Seq-dependent classification approaches are recent, with relatively low sensitivity and specificity. In this study, we aimed to classify patients into CMS groups using their RNA-seq profiles.

Materials and methods: We first identified subtype-specific and survival-associated genes using the Fuzzy C-Means algorithm and log-rank test. We then classified patients using support vector machines with backward elimination methodology.

Results: We optimized RNA-seq-based classification using 25 genes with a minimum classification error rate. In this study, we reported the classification performance using precision, sensitivity, specificity, false discovery rate, and balanced accuracy metrics.

Conclusion: We present a gene list for colon cancer classification with minimum classification error rates and observed the lowest sensitivity but the highest specificity with CMS3-associated genes, which significantly differed due to the low number of patients in the clinic for this group.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用支持向量机将结肠癌患者分为一致认可的分子亚型。
背景/目的:结肠癌的分子异质性使得肿瘤分类成为有效治疗的必要条件。结肠癌亚型鉴定联盟(Colorectal Cancer Subtyping Consortium)制定的共识分子亚型(CMS)是对结肠癌患者进行分子亚型鉴定的方法之一。CMS 特异性 RNA-Seq 依赖性分类方法是最近才出现的,灵敏度和特异性相对较低。在本研究中,我们旨在利用患者的RNA-seq图谱将其分为CMS组:我们首先使用模糊 C-Means 算法和对数秩检验确定了亚型特异性基因和生存相关基因。然后,我们使用支持向量机和反向排除法对患者进行分类:我们优化了基于 RNA-seq 的分类,使用了 25 个分类错误率最小的基因。在本研究中,我们使用精确度、灵敏度、特异性、误诊率和平衡准确率指标报告了分类性能:我们提出了一个分类错误率最低的结肠癌分类基因列表,并观察到 CMS3 相关基因的灵敏度最低,但特异性最高,由于该组临床患者人数较少,因此灵敏度和特异性存在显著差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mechanistic insights into cardiac regeneration and protection through MEIS inhibition. Chelidonic acid abrogates oxidative stress and memory dysfunction in experimental aging rats. Cannabinoid receptor ligands modulate fibrosis and inflammation in idiopathic pulmonary fibrosis: a preliminary study. The cumulative effect of ellagic acid and carnosic acid attenuates oxidative events during diabetic wound healing: in different applications and on different days. Characterization of TFIIE-regulated genes by transcriptome analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1