Y Jane Choi, Ellen Williams, Mar Janna Dahl, Sebastian E Amos, Christopher James, Angelo P Bautista, Veena Kurup, Gabrielle C Musk, Helen Kershaw, Peter G Arthur, Anthony Kicic, Yu Suk Choi, Jessica R Terrill, J Jane Pillow
{"title":"Antenatal creatine supplementation reduces persistent fetal lung inflammation and oxidative stress in an ovine model of chorioamnionitis.","authors":"Y Jane Choi, Ellen Williams, Mar Janna Dahl, Sebastian E Amos, Christopher James, Angelo P Bautista, Veena Kurup, Gabrielle C Musk, Helen Kershaw, Peter G Arthur, Anthony Kicic, Yu Suk Choi, Jessica R Terrill, J Jane Pillow","doi":"10.1152/ajplung.00241.2023","DOIUrl":null,"url":null,"abstract":"<p><p>Chorioamnionitis is a common antecedent of preterm birth and induces inflammation and oxidative stress in the fetal lungs. Reducing inflammation and oxidative stress in the fetal lungs may improve respiratory outcomes in preterm infants. Creatine is an organic acid with known anti-inflammatory and antioxidant properties. The objective of the study was to evaluate the efficacy of direct fetal creatine supplementation to reduce inflammation and oxidative stress in fetal lungs arising from an in utero proinflammatory stimulus. Fetal lambs (<i>n</i> = 51) were instrumented at 90 days gestation to receive a continuous infusion of creatine monohydrate (6 mg·kg<sup>-1</sup>·h<sup>-1</sup>) or saline for 17 days. Maternal chorioamnionitis was induced with intra-amniotic lipopolysaccharide (LPS; 1 mg, O55:H6) or saline 7 days before delivery at 110 days gestation. Tissue creatine content was assessed with capillary electrophoresis, and inflammatory markers were analyzed with Luminex Magpix and immunohistochemistry. Oxidative stress was measured as the level of protein thiol oxidation. The effects of LPS and creatine were analyzed using a two-way ANOVA. Fetal creatine supplementation increased lung creatine content by 149% (<i>P</i><sub>Cr</sub> < 0.0001) and had no adverse effects on lung morphology. LPS-exposed groups showed increased levels of interleukin-8 in the bronchoalveolar lavage (<i>P</i><sub>LPS</sub> < 0.0001) and increased levels of CD45<sup>+</sup> leukocytes (<i>P</i><sub>LPS</sub> < 0.0001) and MPO<sup>+</sup> (<i>P</i><sub>LPS</sub> < 0.0001) cells in the lung parenchyma. Creatine supplementation significantly reduced the levels of CD45<sup>+</sup> (<i>P</i><sub>Cr</sub> = 0.045) and MPO<sup>+</sup> cells (<i>P</i><sub>Cr</sub> = 0.012) in the lungs and reduced thiol oxidation in plasma (<i>P</i><sub>Cr</sub> < 0.01) and lung tissue (<i>P</i><sub>Cr</sub> = 0.02). In conclusion, fetal creatine supplementation reduced markers of inflammation and oxidative stress in the fetal lungs arising from chorioamnionitis.<b>NEW & NOTEWORTHY</b> We evaluated the effect of antenatal creatine supplementation to reduce pulmonary inflammation and oxidative stress in the fetal lamb lungs arising from lipopolysaccharide (LPS)-induced chorioamnionitis. Fetal creatine supplementation increased lung creatine content and had no adverse effects on systemic fetal physiology and overall lung architecture. Importantly, fetuses that received creatine had significantly lower levels of inflammation and oxidative stress in the lungs, suggesting an anti-inflammatory and antioxidant benefit of creatine.</p>","PeriodicalId":7593,"journal":{"name":"American journal of physiology. Lung cellular and molecular physiology","volume":" ","pages":"L40-L53"},"PeriodicalIF":3.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Lung cellular and molecular physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajplung.00241.2023","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chorioamnionitis is a common antecedent of preterm birth and induces inflammation and oxidative stress in the fetal lungs. Reducing inflammation and oxidative stress in the fetal lungs may improve respiratory outcomes in preterm infants. Creatine is an organic acid with known anti-inflammatory and antioxidant properties. The objective of the study was to evaluate the efficacy of direct fetal creatine supplementation to reduce inflammation and oxidative stress in fetal lungs arising from an in utero proinflammatory stimulus. Fetal lambs (n = 51) were instrumented at 90 days gestation to receive a continuous infusion of creatine monohydrate (6 mg·kg-1·h-1) or saline for 17 days. Maternal chorioamnionitis was induced with intra-amniotic lipopolysaccharide (LPS; 1 mg, O55:H6) or saline 7 days before delivery at 110 days gestation. Tissue creatine content was assessed with capillary electrophoresis, and inflammatory markers were analyzed with Luminex Magpix and immunohistochemistry. Oxidative stress was measured as the level of protein thiol oxidation. The effects of LPS and creatine were analyzed using a two-way ANOVA. Fetal creatine supplementation increased lung creatine content by 149% (PCr < 0.0001) and had no adverse effects on lung morphology. LPS-exposed groups showed increased levels of interleukin-8 in the bronchoalveolar lavage (PLPS < 0.0001) and increased levels of CD45+ leukocytes (PLPS < 0.0001) and MPO+ (PLPS < 0.0001) cells in the lung parenchyma. Creatine supplementation significantly reduced the levels of CD45+ (PCr = 0.045) and MPO+ cells (PCr = 0.012) in the lungs and reduced thiol oxidation in plasma (PCr < 0.01) and lung tissue (PCr = 0.02). In conclusion, fetal creatine supplementation reduced markers of inflammation and oxidative stress in the fetal lungs arising from chorioamnionitis.NEW & NOTEWORTHY We evaluated the effect of antenatal creatine supplementation to reduce pulmonary inflammation and oxidative stress in the fetal lamb lungs arising from lipopolysaccharide (LPS)-induced chorioamnionitis. Fetal creatine supplementation increased lung creatine content and had no adverse effects on systemic fetal physiology and overall lung architecture. Importantly, fetuses that received creatine had significantly lower levels of inflammation and oxidative stress in the lungs, suggesting an anti-inflammatory and antioxidant benefit of creatine.
期刊介绍:
The American Journal of Physiology-Lung Cellular and Molecular Physiology publishes original research covering the broad scope of molecular, cellular, and integrative aspects of normal and abnormal function of cells and components of the respiratory system. Areas of interest include conducting airways, pulmonary circulation, lung endothelial and epithelial cells, the pleura, neuroendocrine and immunologic cells in the lung, neural cells involved in control of breathing, and cells of the diaphragm and thoracic muscles. The processes to be covered in the Journal include gas-exchange, metabolic control at the cellular level, intracellular signaling, gene expression, genomics, macromolecules and their turnover, cell-cell and cell-matrix interactions, cell motility, secretory mechanisms, membrane function, surfactant, matrix components, mucus and lining materials, lung defenses, macrophage function, transport of salt, water and protein, development and differentiation of the respiratory system, and response to the environment.