Chromatin organization of muscle stem cell.

2区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Current Topics in Developmental Biology Pub Date : 2024-01-01 Epub Date: 2024-02-16 DOI:10.1016/bs.ctdb.2024.01.014
Philina Santarelli, Valentina Rosti, Maria Vivo, Chiara Lanzuolo
{"title":"Chromatin organization of muscle stem cell.","authors":"Philina Santarelli, Valentina Rosti, Maria Vivo, Chiara Lanzuolo","doi":"10.1016/bs.ctdb.2024.01.014","DOIUrl":null,"url":null,"abstract":"<p><p>The proper functioning of skeletal muscles is essential throughout life. A crucial crosstalk between the environment and several cellular mechanisms allows striated muscles to perform successfully. Notably, the skeletal muscle tissue reacts to an injury producing a completely functioning tissue. The muscle's robust regenerative capacity relies on the fine coordination between muscle stem cells (MuSCs or \"satellite cells\") and their specific microenvironment that dictates stem cells' activation, differentiation, and self-renewal. Critical for the muscle stem cell pool is a fine regulation of chromatin organization and gene expression. Acquiring a lineage-specific 3D genome architecture constitutes a crucial modulator of muscle stem cell function during development, in the adult stage, in physiological and pathological conditions. The context-dependent relationship between genome structure, such as accessibility and chromatin compartmentalization, and their functional effects will be analysed considering the improved 3D epigenome knowledge, underlining the intimate liaison between environmental encounters and epigenetics.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"158 ","pages":"375-406"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Topics in Developmental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.ctdb.2024.01.014","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

The proper functioning of skeletal muscles is essential throughout life. A crucial crosstalk between the environment and several cellular mechanisms allows striated muscles to perform successfully. Notably, the skeletal muscle tissue reacts to an injury producing a completely functioning tissue. The muscle's robust regenerative capacity relies on the fine coordination between muscle stem cells (MuSCs or "satellite cells") and their specific microenvironment that dictates stem cells' activation, differentiation, and self-renewal. Critical for the muscle stem cell pool is a fine regulation of chromatin organization and gene expression. Acquiring a lineage-specific 3D genome architecture constitutes a crucial modulator of muscle stem cell function during development, in the adult stage, in physiological and pathological conditions. The context-dependent relationship between genome structure, such as accessibility and chromatin compartmentalization, and their functional effects will be analysed considering the improved 3D epigenome knowledge, underlining the intimate liaison between environmental encounters and epigenetics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
肌肉干细胞的染色质组织
骨骼肌的正常功能对人的一生都至关重要。环境和多种细胞机制之间的重要串联使横纹肌能够成功地发挥作用。值得注意的是,骨骼肌组织会对损伤做出反应,生成一个完全正常的组织。肌肉强大的再生能力依赖于肌肉干细胞(MuSCs或 "卫星细胞")与其特定微环境之间的微妙协调,这种微环境决定了干细胞的活化、分化和自我更新。染色质组织和基因表达的精细调节对肌肉干细胞池至关重要。在发育过程中、在成体阶段、在生理和病理条件下,获得特定品系的三维基因组结构是肌肉干细胞功能的关键调节器。考虑到三维表观基因组知识的改进,我们将分析基因组结构(如可及性和染色质分区)与功能效应之间的环境依赖关系,强调环境遭遇与表观遗传学之间的密切联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.00
自引率
0.00%
发文量
91
期刊最新文献
Cardiac construction-Recent advances in morphological and transcriptional modeling of early heart development. Computational approaches for mechanobiology in cardiovascular development and diseases. Genetics and etiology of congenital heart disease. Macrophage lineages in heart development and regeneration. RNA binding proteins in cardiovascular development and disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1